
© The Author(s) 2024. www.gs-publishing.uk

                        © The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License
                 (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and 
reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons license, and indicate if changes were made. 

BME Horizon  Vol 2 Issue 1 2024

DOI: 10.37155/2972-449X-vol2(1)-110	

ORIGINAL RESEARCH ARTICLE

Open Access

Bond strength between receptor binding domain 
of spike protein and human angiotensin converting 
enzyme-2 using machine learning

Abdulmateen Adebiyi1, Puja Adhikari2, Praveen Rao1, Wai-Yim Ching2*

1Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO 
65212, USA.
2Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA.

*Correspondence to: Wai-Yim Ching, Department of Physics and Astronomy, University of Missouri-Kansas 
City, Kansas City, MO 64110, USA; E-mail: chingw@umkc.edu; ORCID ID: 0000-0001-7738-8822.

Received: April 16th, 2024; Accepted: June7th, 2024; Published Online: June 15th, 2024.

How to cite: Adebiyi A., Adhikari P., Rao P. and Ching W.Y. Bond strength between receptor binding domain of 
spike protein and human angiotensin converting enzyme-2 using machine learning. BME Horizon, 2024; vol2(1). 
DOI: https://doi.org/10.37155/2972-449X-vol2(1)-110.

Abstract: The spike protein (S-protein) of SARS-CoV-2 plays an important role in binding, fusion, and host 
entry. In this study, we have predicted interatomic bond strength between receptor binding domain (RBD) and 
angiotensin converting enzyme-2 (ACE2) using machine learning (ML), that matches with expensive ab initio 
calculation result. We collected bond order result from ab initio calculations. We selected a total of 18 variables 
such as bond type, bond length, elements and their coordinates, and others, to train ML models. We then trained 
five well-known regression models, namely, Decision Tree regression, KNN Regression, XGBoost, Lasso 
Regression, and Ridge Regression. We tested these models on two different datasets, namely, Wild type (WT) 
and Omicron variant (OV). In the first setting, we used 90% of each dataset for training and 10% for testing to 
predict the bond order. XGBoost model outperformed all the other models in the prediction of the WT dataset. 
It achieved an R2 Score of 0.997. XGBoost also outperformed all the other models with an R2 score of 0.9998 
in the prediction of the OV dataset. In the second setting, we trained all the models on the WT (or OV) dataset 
and predicted the bond order on the OV (or WT) dataset. Interestingly, Decision Tree outperformed all the other 
models in both cases. It achieved an R2 score of 0.997.
Keywords: Machine learning; Spike protein; RBD-ACE2 interface; Interatomic bonding; Ab initio calculations; 
XGBoost; Decision Trees; Linear regression
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1. Introduction

The COVID-19 pandemic started in November 
2019, taking millions of lives globally. 
The severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2) has several variants of 
concerns (VOC) such as Alpha [1], Beta [2], Delta [3], 
Gamma [4], and Omicron [5] and variants of interest 
(VOI) such as Eta [6], Iota [7], Kappa [8], Lambda [9], and 
Mu [10]. These VOC and VOI have shown the nature of 
rapidly mutating SARS-CoV-2. With overwhelming 
effort of the scientific community, the development 
of vaccines has saved billions of lives. In addition to 
ongoing research in medicine and biology, scientists 
from various discipline have collaborated in an effort 
to enhance prepardness of such a situation in the future.

SARS-CoV-2 is composed of four proteins: spike 
(S), envelope (E), membrane (M), and nucleocapsid 
(N) proteins (see Figure 1(a)). Among these four 
proteins, spike protein (S-protein) plays an important 
role and initiates the infection by binding with human 
angiotensin converting enzyme 2 (ACE2). S-protein 
has two subunits S1 and S2. S1 consists of signal 
peptide (SP), n-terminal domain (NTD), receptor 
binding domain (RBD), subdomain 1 (SD1), and 
subdomain 2 (SD2). Similary, S2 consists of fusion 
peptide (FP), heptad repeat 1 (HR1), central helix 
(CH), connecting domain (CD), heptad repeat 2 (HR2), 
transmembrane domain (TM), and cytoplasmic tail 
(CT). Among these domains of S-protein, RBD binds 
with ACE2 (see Figure 1(b)). 

Figure 1. (a) Structure of SARS-CoV-2, highlighting its four key proteins and their interaction with angiotensin converting 
enzyme 2 (ACE2). (b) Ribbon structure of interface between receptor binding domain (RBD) and ACE2.

There has been a  lot  of  research including 
experimental [11-13] and computational [14-18] study focused 
on RBD-ACE2 interaction. In the computational 
research, most of the calculations are performed utilizing 
molecular dynamics (MD) [15, 19-21], with a few employing 
ab initio method. Ab initio calculations are known for 
their accuracy however, they are difficult and expensive 
especially for such large and complex biomolecules. In 
our past studies, we have conducted ab initio calculations 
for around 4999 atoms [18], which is very large but not 
sufficient to calculate biomolecules with several thousands 
of atoms. Hence, we have utilized ab initio methods on 
such biomolecules using the divide-and-conquer strategy. 
Using this strategy, we divide the complex biomolecules 
in small sections and calculate their properties such as 
electronic structure, interatomic bonding, and partial 

charge. Among these properties interatomic bonding is a 
crucial one as it reflects the types of bonds involved, and 
their corresponding strength. Investigating the interatomic 
bonding within the RBD-ACE2 interface identifies key 
interacting amino acids. This information can be used 
to target specific amino acids. Given that RBD-ACE2 is 
the initial point of contact between the SARS-CoV-2 and 
human cells, the strategic targeting of these interacting 
amino acids can disrupt their interaction and stop virus 
attack. However, ab initio calculations can be costly. 
Therefore, finding ways to achieve comparable accuracy 
at a reduced expense is essential, and this is where 
machine learning (ML) steps in.

ML represents a sub-field within artificial intelligence 
(AI), employing algorithms to discern significant 
patterns and correlations within complex datasets, 
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facilitating the prediction of specific properties [22]. 
Using ML, computers can excel in several tasks 
that humans can perform using their knowledge and 
wisdom. ML delves into how computer system mimic 
human learning processes and explores methods for 
self-improvement to acquire new knowledge [23]. Widely 
utilized across diverse domains such as healthcare, 
finance, marketing, and telecommunications, ML 
models have become indispensable in today’s real-
world applications [23]. 

ML models have also been applied in physics and 
chemistry. For instance, Hansen et al. applied ML 
techniques to predict molecular properties [24]. The 
precise and efficient prediction of such properties 
is crucial for rational computer design in chemical 
and pharmaceutical industries. Du et al. proposed a 
method for learning the relativistic continuum mass 
table by using the kernel ridge regression [25]. They 
used it to learn the nuclear mass table obtained by 
the relativistic continuum Hartree-Boogoliubov 
theory. Recently, Adhikari et al. suggested the use 
of ML techniques for predicting potential unknown 
COVID-19 mutations [26].

In this study, we employed interatomic bonding 
result obtained through ab initio calculations and 
tested ML to predict these already obtained bonding 
outcomes. Our objective is to replicate results 
obtained via ab initio methods, with the eventual aim 
of overcoming the cost limitations associated with 
such calculations.

2. Method
2.1 Modelling RBD-ACE2 Interface
The interface structures were extracted from the 
PDB ID 6M0J [13] for the Wild type (WT) and PDB 
ID 7WBP [27] for the Omicron variant (OV). Amino 
acids within the sequence S19-I88 and G319-T365 
were incorporated from ACE2, while the sequence 
T333-G526 was included from the RBD. The entire 
model consists of 311 amino acids. Hydrogen atoms 
were added using the Leap module with ff14SB force 
field in the AMBER package [28] resulting into a total 
of 4817 and 4873 atoms for WT and OV, respectively. 
The RBD-ACE2 of the OV contains 15 mutations. 

2.2 Ab initio Packages
For the ab initio calculations, we have used two density 
functional theory (DFT) packages—Vienna ab initio 

simulation package (VASP) [29] and orthogonalized 
linear combination of atomic orbital (OLCAO) [30]. 
VASP was used for interface model optimization. In 
VASP, we used projector augmented wave (PAW)  [31, 32] 
method with Perdew-Burke-Ernzerhof (PBE) [31] 
exchange correlation functional within the generalized 
gradient approximation (GGA). We used the energy 
cut off 500 eV with electronic convergence of 10-4 eV, 
force convergence for ionic relaxation to -10-2 eV, and a 
single kpoint.

The optimized structure from VASP is used as an 
input for the OLCAO package. The combination of 
VASP with OLCAO is very effective for complex 
biomolecules [14, 16, 18, 30, 33, 34]. OLCAO uses atomic 
orbitals for basis function expansion. It is used to 
calculate the interatomic bonding in terms of bond 
order (BO). BO determines the strength of the bond. 
OLCAO uses Mulliken’s population analysis to 
calculate BO. BO is the overlap population ραβ between 
pair of atoms (α, β) defined as:

	 	 (1) 

where Siα,jβ are the overlap integrals between the ith 
orbital in αth atom and the orbital in atom, and are the 
eigen vector coefficients of the band, jth orbital in the 
atom. For the ab initio calculations using OLCAO 
method, the total wall clock time and CPU time 
utilized for RBD-ACE2 OV are approximately 617.89 
hours and 617.75 hours, respectively, resulting in a 
CPU efficiency of 99.98%. For RBD-ACE2 WT, the 
total wall clock time and CPU time are approximately 
619.07 hours, and 617.16 hours respectively, with a 
CPU efficiency of 99.69%. The dataset for WT and OV 
obtained from OLCAO were further used as described 
in section 2.3 below. 

2.3 Dataset
The BO result obtained from OLCAO calculation 
served as the source data. The BO prediction was 
conducted on both interfaces: RBD-ACE2 WT and 
RBD-ACE2 OV datasets. Note that the RDB-ACE2 
WT and RDB-ACE2 OV datasets contained 25,356 
rows and 25, 753 rows, respectively. Each dataset had 
21 variables. The datasets contained the X, Y and Z 
coordinates of the bond between the Atom 1 and Atom 
2. The variables in the datasets are briefly explained in 
the table below. We used these datasets to predict the 
bond strength also known as the BO.
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Table 1. Brief description of the variables

# Variable Brief Description
1 Bond Shows the bond
2 BL Shows the bond length
3 Ele1 Element Participating in the bond
4 X1 Position Coordinates
5 Y1 Position Coordinates
6 Z1 Position Coordinates
7 Ele2 Element Participating in the bond
8 X2 Position Coordinates
9 Y2 Position Coordinates
10 Z2 Position Coordinates
11 PDBele1 Identifier for PDB
12 AA1 Amino acid participating in the bond

13 SeqNo1 Sequence number of the amino acid 
participating in the bond

14 ChainN1 Chain of the amino acids
15 PDBele2 Identifier for PDB
16 AA2 Amino acid participating in the bond

17 SeqNo2 Sequence number of the amino acid 
participating in the bond

18 ChainN2 Chain of the amino acids

2.4 Data Pre-processing
In the original dataset, the total number of variables 
were 21. We dropped Atom1 and Atom2 as they are 
both identifiers of the OLCAO package. Eighteen 
of them were used for training the models, and BO 
was the target variable for prediction. We used the 
variables bond, bond length, Ele1, x1, y1, z1, PDBele1, 
AA1, SeqNo1, ChainN1, Ele2, x2, y2, z2, PDBele2, 
AA2, SeqNo2 and ChainN2 as input features for our 
regression models. Label encoding was used to convert 
the categorical variables to numerical ones before 
passing them to the ML models. Label encoding is an 
efficient way to transform categorical data to numerical 
ones. It is simple, efficient and helps with memory 
efficiency.

2.5 Machine Learning 
In our work, five well-known ML models were used 
for the BO prediction. The models were XGBoost 
Regression, K-Nearest Neighbor (KNN) Regression, 
Decision Trees Regression, Lasso Regression, and 
Ridge Regression. The ML models ran on average for 4 
hours using grid-search hyperparameter tuning and 10-
fold cross validation. These ML models have performed 
well on different datasets and are commonly used in 

research projects. XGBoost has outperformed so many 
models in literature via extreme gradient boosting  [35]. 
Linear regression is used for its simplicity before 
using other complex models. Decision Trees are often 
used for many problems because of its interpretability. 
It can learn complex relationship between features. 
Next, we briefly describe each model and its unique 
characteristics for learning on data.

Figure 2. Overall approach for BO prediction
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Lasso Regression: It is a type of linear regression 
that combines both linear regression and lasso 
hyperparameter tuning. It helps to pick the best 
regression model by discarding less relevant features [36]. 
The predicted BO is calculated as the product of the 
input features with the learned coefficients, and then 
adding the regularization term to penalize the absolute 
values of the coefficient.

Ridge Regression: It is a type of linear regression 
that  uses  Ridge Optimizat ion and includes a 
regularization term to the regression function. The term 
penalizes the sum of the squared coefficients [37]. The 
predicted BO is calculated by multiplying the input 
features with the learned coefficients and then adding 
the regularization term that penalizes the squared 
magnitudes of the coefficients.

Decision Tree Regression: This regression type 
uses a tree-like model of decisions to predict the target 
value. The tree structure has the root node, decision 
nodes, and leaf nodes. The root node is the initial 
node of the decision tree. The predicted BO value 
is computed as the average numerical value for the 
training data that is stored in the selected leaf node. 
The optimal structure for the tree is learned during the 
training process.

KNN Regression: It is a supervised learning 
regression model in which the model predicts a 
continuous target variable based on the average 
or weighted average of the values of its k nearest 
neighbours. The predicted BO is computed by 
estimating the weighted average of the target values of 
the k-nearest neighbors.

XGBoost: It is a machine learning models that 
combines decision trees, ensemble learning, and 
gradient boosting. It is scalable and can be used to 
train on large datasets. The predicted BO is the sum of 
individual tree predictions multiplied by the learning 
rate, which is a hyperparameter used during training. 
Hyperparameters are the type of parameters that are 
used to control and manage an ML model during 
training.

In our experiments, we used the grid search approach 
to identify the best hyperparameters for the models. 
We also performed a 10-fold cross validation on our 
datasets. Cross validation is a technique that is used 
to evaluate a model by dividing the dataset into two 
segments [38, 39]. The first segment is used to train the 

model, and the other segment is used to test the model 
performance[39]. This process is repeated a number of 
times so that every data sample is used in the test set 
leading to a more robust evaluation of the model.

2.6 Bond Order Regression
Before the regression process, we first pre-processed 
our datasets so that it can be easily passed to the ML 
models. We converted the data that are not in numerical 
form to numerical form using label encoding. We then 
split our datasets into the training set and the testing 
set. We used four different settings in our work:

A. Train on 90% of the RBD-ACE2 WT dataset 
and evaluate the models on the remaining 10% of the 
dataset to predict the BO.

B. Train on 90% of the RBD-ACE2 OV dataset 
and evaluate the models on the remaining 10% of the 
dataset to predict the BO.

C. Train on the entire RBD-ACE2 WT dataset and 
evaluate the models on the entire RBD-ACE2 OV 
dataset to predict the BO.

D. Train on the entire RBD-ACE2 OV dataset and 
evaluate the models on the entire RBD-ACE2 WT 
dataset to predict the BO. 

3. Result
In this section, we present the performance of the 
aforementioned ML models on the RBD-ACE2 WT 
and RBD-ACE2 OV datasets. We implemented all the 
models in Python using Scikit Learn [40], Numpy [41], 
Matplotlib, and XGBoost libraries [42]. We used the 
best model after the hyperparameter tuning for each 
approach for the BO prediction. 

3.1 Performance Metrics 
Next, we will discuss the different performance metrics 
that were used in this work to evaluate our models. 
Our regression models aimed to predict the BO in the 
chosen datasets. We evaluated the models based on 
the R2 Score, Root Mean Square Error (RMSE), and 
the Relative Absolute Error metrics (RAE), which are 
explained below. 

R2: This metric is referred to as the goodness of 
fit or the coefficient of determination. It shows how 
the regression line approximates the actual data. The 
values are between 0 to 1 with 1 being the value when 
the model fits the data perfectly. 

RAE: The RAE is the ratio of the mean error 
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(residuals) to the errors by the naïve model.
RMSE: This is calculated by computing the square 

root of the Mean Squared Error (MSE). MSE is 
the average of the squared differences between the 
predicted and expected target values. If all the predicted 

BO values are the same as the true BO values, RSME 
will be 0. RMSE is a good metric for regression 
analysis because it penalizes large error. The RMSE 
measures the standard deviation of the errors when the 
regression model makes a prediction.

Table 2. Performance Metrics of the ML models for Setting (A) (best value is shown in bold)

Models R2 RAE RMSE
XGBoost 0.997 0.029 0.008

Decision Trees 0.996 0.025 0.009
KNN 0.320 0.800 0.130

Ridge Regression 0.830 0.392 0.065
Lasso Regression 0.442 0.696 0.118

Table 3. Performance Metrics of the ML models for Setting (B) (best value is shown in bold)

Models R2 RAE RMSE
XGBoost 0.998 0.028 0.006

Decision Trees 0.996 0.025 0.009
KNN 0.339 0.726 0.126

Ridge Regression 0.826 0.405 0.065
Lasso Regression 0.444 0.712 0.116

First, we present the results for Settings (A) and (B). 
Table 2 shows the performance metrics of the various 
ML models for Setting (A). XGBoost outperformed 
all the other models. It achieved an R2 score of 0.997, 
RAE of 0.029, and RMSE of 0.008. Table 3 shows 
the performance metrics of the various ML models for 
Setting (B). Once again, XGBoost outperformed other 

models and achieved an R2 score of 0.998, RAE of 
0.028, and RMSE of 0.006.

Next, we present the results for Settings (C) and 
(D). Table 4 and Table 5 show the performance 
results of our various ML models for Setting (C) and 
Setting (D), respectively. In both cases, Decision Trees 
outperformed other models.

Table 4. Performance Metrics of the ML models for Setting (C) (best value is shown in bold)

Models R2 RAE RMSE
XGBoost 0.995 0.049 0.011

Decision Tress 0.997 0.028 0.008
KNN 0.386 0.708 0.121

Ridge Regression 0.824 0.406 0.065
Lasso Regression 0.386 0.710 0.115

Table 5. Performance Metrics of the ML models for Setting (D) (best value is shown in bold)

Models R2 RAE RMSE
XGBoost 0.991 0.064 0.015

Decision Tress 0.997 0.024 0.007
KNN 0.385 0.702 0.121

Ridge Regression 0.822 0.410 0.065
Lasso Regression 0.445 0.712 0.115

We additionally plotted the R2 values for the various 
models in Settings (A) and (B). These are illustrated 
in Figures 3 and 4, where the x-axis represents 

the actual BO and the y-axis denotes the predicted 
BO. For models that achieved high R2 score, we 
observed that the predictions were clustered around 



 Vol 2 Issue 1 2024

the 45-degree line (shown as a dotted line). Decision 
Trees and XGBoost models performed very well. 
For models with low R2 score, we observed that the 
predicted values were scattered differently. Clearly, 
the linear regression models were unable to capture 
the underlying distribution of the BO values. KNN 

regression also performed poorly on the tested datasets. 
Similar trends were observed for Settings (C) and (D) 
where Decision Trees and XGBoost achieved high R2 
scores. In the interest of space, the plots are shown in 
the supplementary information as Figure S1 and S2, 
respectively.

Figure 3. R2 plot for the tested regression models in Setting (A).

Figure 4. R2 Plot for the tested regression models in Setting (B).
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4. Discussion
ML is a subset of artificial intelligence (AI) that 
employs algorithms to detect important patterns 
and relationships within intricate data sets, aiding 
in forecasting specific characteristics. The use of 
ML models to predict various aspects of COVID-19 
mutations has gained attraction in recent years [43]. 
Huang et al. identified COVID-19 severity-related 
SARS-CoV-2 mutation using a machine learning 
method. They collected genome-wide mutation 
of virulent strains and the severity of COVID-19 
pneumonia in patients. They used 1513 viral genomes 
from the Global Initiative on Sharing All Influenza 
Data (GISAID) database. They employed Decision 
Tree, K-Nearest Neighbor, Random Forest, and 
Support Vector machine in their work. They evaluated 
the performance of their models using sensitivity, 
specificity, accuracy, Matthew’s correlation coefficient, 
and G-Mean. Their result showed a set of mutations 
associated with SARS-CoV-2 severity, which can be 
used to quickly recognize SARS-COV-2 infections 
associated with severe outcomes and guide the 
development of SARS-CoV-2 vaccines [44].

Burukanli et al. predicted COVID-19 virus mutation 
using Long Short-Term Memory (LSTM) and attention 
mechanisms. Their proposed HyperAttCov model 
outperforms many state-of-the-art methods. Their 
method achieved an accuracy of 70%, precision of 
92%, and a Mathew’s correlation coefficient of 46.5% 
on the COVID-19 test dataset. Their proposed method 
was able to successfully predict mutations in the 
COVID-19 dataset in 2022 [45].

Han et al. worked on the predicting the binding 
affinity between SARS-CoV-2 spike receptor binding 
domain (RBD) with multiple amino acid mutations and 
human angiotensin-converting enzyme 2 (ACE2). Their 
models were based on CNN and CNN-RNN. Their 
methods achieved a concordance index of around 0.8. 
They developed a free online platform named D3A1-
spike to efficiently predict the binding affinity between 
spike RBD mutants and ACE2. Their predicted results 
closely matched their experimental results [46].

Adhikari et al. suggested the use of ML techniques 
for predicting COVID-19 mutations [26]. In our study, 
we leveraged the efficacy of ML models for the 
prediction of BO from ab initio calculations. We 

demonstrated that regression models can predict BO 
with a very high performance. We used XGBoost 
Regression,  Decis ion Tree Regression,  KNN 
Regression, Lasso Regression, and Ridge Regression 
in our BO prediction. Our BO prediction task was 
done on the RBD-ACE2 WT and RBD-ACE2 OV 
datasets. We first preprocessed the variables before 
training the machine learning models using label 
encoding. We trained the machine learning models 
by splitting the training and testing set into four 
different settings. In Settings (A) and (B), the training 
and testing samples were from the same dataset. In 
Settings (C) and (D), the training and testing samples 
were from different dataset. In the first two settings, 
the training set comprised 90% of the total dataset, 
while the test set contains 10% of the dataset. In 
Settings (C) and (D), we trained the model on the 
entire WT (or OV) dataset and predicted the BO on 
the entire OV (or WT) dataset. We evaluated our 
different machine learning models by using R2 Score, 
Root Mean Square Error and Relative Absolute Error 
Metrics. Using ML, we predicted the BO or bond 
strength calculated by ab initio study. This is a first 
step in this direction, as accurately predicting ab initio 
results will significantly reduce the computational 
costs and enable the quantification of such properties 
for larger systems.

5. Conclusion
In this work, we explored the efficacy of well-known 
ML models in predicting BO values derived from 
ab initio calculations, which are computationally 
demanding to simulate on high performance computing 
platforms. Specifically, we employed XGBoost 
Regression, Decision Tree Regression, KNN Regression, 
Lasso Regression, and Ridge Regression for BO 
prediction. The XGBoost model outperformed all other 
models when the training and testing samples were from 
the same dataset (i.e., Settings (A) and (B)). However, 
Decision Trees outperformed all other models when the 
training and testing samples were from different datasets 
(i.e., Settings (C) and (D)). Linear regression models and 
KNN regression performed poorly in all settings. Our 
investigation shows that ML models such as Decision 
Trees and XGBoost can be used to accurately predict 
the BO values without expensive simulation-based 
computations.
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Supplementary Information

Figure S1: R2 plot for the tested regression models in Setting (C).

Figure S2: R2 plot for the tested regression models in Setting (D).
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