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Abstract: Amino acids (AAs) are the basic building blocks of proteins and regulate the body’s metabolism. 
The mechanical properties of proteins play an essential role in their functionalities in addition to their structure 
and dynamic properties. They are paramount in understanding the flexibility, rigidity, and ability to resist 
deformation. It is critical to investigate the mechanical properties of the twenty standard AAs that comprise the 
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have identified AAs with relatively higher/lower compressibility, rigidity, flexibility, stretchability, and hardness 
based on their mechanical properties. Our findings are valuable as the starting point for future studies on large 
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1. Introduction

Amino acids (AA) are the basic units of 
proteins. In fact, proteins are long chains 
of amino acids. Both AAs and proteins are 

building blocks of life. AAs are used extensively in 
a variety of industrial and medical applications[1]. 
Structurally, each AA is an organic compound that has 
a central α-carbon atom linked together with a basic 
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Amino acids (AA) are the basic units of 
proteins. In fact, proteins are long chains 
of amino acids. Both AAs and proteins are 

building blocks of life. AAs are used extensively in 
a variety of industrial and medical applications[1]. 
Structurally, each AA is an organic compound that has 
a central α-carbon atom linked together with a basic 
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amino group, a carboxylic acid group, a hydrogen atom 
and an R-group, or the side-chain group. The R-group 
characterizes the chemical nature of each AA. There 
are 20 canonical AAs as listed in Table 1. They are 
classified in different groups depending in their side 
chains such as aliphatic hydrophobic (Ala, Gly, Ile, 
Leu, Met, Pro, and Val), aromatic hydrophobic (Phe 
and Trp), polar with neutral side chain (Asn, Cys, Gln, 
Ser, Thr, and Tyr), acidic with negatively charged side 
chain (Asp and Glu), basic with positively charged 
side chain (Arg, Lys, and His). Some AAs have special 
or unique properties such as Cys, Gly, Met, Pro, and 
Ser. Cys has a very reactive sulfhydryl group (thiol 
group) on its sidechain. This free thiol group can 
react with another thiol from another Cys residue to 
form a disulfide bond. This renders Cys a permanent 
component of protein primary structure and plays a 
crucial role in protein-folding pathways[2]. In addition, 
the thiol sidechain in Cys also participates in enzymatic 
reactions[3]. Gly is another unique AA and is classified 
as hydrophobic because it contains only one hydrogen 
atom in the sidechain making Gly the most flexible 
AA. Met is also classified as a hydrophobic AA and 
contains sulfur (S) on its sidechain. This S in Met can 
interact with other molecule to form S-containing 
molecules. S-containing molecules have a variety of 
functions including tissue protection, modifying our 
DNA and maintaining proper functioning of cells[2]. 
In addition, Met plays a critical role in initiating the 
synthetic process of new proteins[2]. Pro is unique since 
its sidechain is connected to the protein backbone 
twice, forming a five-membered nitrogen-containing 
ring. This distinctive cyclic structure of Pro gives an 
exceptional conformational rigidity compared to other 
AAs[4]. Ser is important in metabolism by participating 
in the biosynthesis of purines and pyrimidines of 
nucleic acids. This is unique among the 20 AAs in that 
it is encoded by two disjoint sets of codons[5].

AAs are environmentally friendly, inexpensive, 
and easily achievable in high purity. They are used 
as inhibitors or inhibitor-modifying reagents for 
calcite scales[6]. There are density functional theory 
(DFT)-based calculations of AAs to evaluate their 
chemical reactivity[7] and its uses as green corrosion 
inhibitors[8-11]. Currently, there are special interests in 
the area of molecular solids used in biocompatible 
nanodevices[12,13]. DFT-based studies have calculated 

chemical hardness of AAs, using the energy of highest 
occupied molecular orbital and lowest unoccupied 
molecular orbital, which helps to identify their 
reactivity[6]. There exists a study calculating Vickers 
microhardness on crystals with doped AAs[14]. AAs 
crystals have been explored as supramolecular 
materials for their potential applications in photonic 
device, stretchable electronics, and power generation[15]. 
Ji et al[15] have measured Young’s modulus of three 
AAs crystals. Azuri et al calculated Young’s modulus 
of crystalline structure of AAs such as α-glycine, 
γ-glycine, L-alanine, DL-serine, and glycylglycine[16]. 
Matveychuk et al calculated Young’s modulus, linear 
compressibility, shear modulus and Poisson’s ratio on 
crystalline AA hydrogen maleates with prospect of 
designing new crystals[17]. To our knowledge, there are 
lack of studies regarding the mechanical properties of 
the canonical 20 AAs. This study tries to fill that gap. 
Understanding mechanical properties of soft tissues 
enable us to develop realistic simulations for surgical 
planning and training[18]. There is research going on in 
calculating mechanical properties of soft tissues. For 
example, Miller et al studied the extension of soft brain 
tissue[19,20]. Chui et al[21,22], Roan et al[23], and Gao et 
al[18] investigated liver tissues. In addition, Lee et al[24] 
have studied micromechanical properties of complex 
collagenous tissue, Serwane et al[25] have studied 
mechanical properties of developing 3D tissue.

Proteins are vital for all biological processes. 
Understanding protein function requires a complete 
knowledge  of  i t s  s t ruc tura l ,  dynamical ,  and 
mechanical behaviors[26]. Certain proteins change their 
biological functions when subjected to mechanical 
deformations[27]. These deformations are necessary to 
explain the molecular basis for many of the cellular 
processes involving mechano-sensing and mechano-
transduction[27]. Hence, there is an urgent need to 
investigate the protein behavior under mechanical 
deformation. Changes in amino acid sequence may 
alter the mechanical properties of proteins in many 
aspects[28]. For example, altering the hydrophobic 
sidechains could influence the amount of energy 
required to deform the protein due to change in 
the attractive energy between side chains via their 
hydrophobicity[29-31]. Additionally, changing the charge 
in the sidechains could interrupt their ionic interactions 
via losing the salt bridges between them, resulting in 
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destabilizing the protein stiffness[32,33].
These  AAs  dr ive  the  fo ld ing  and  fo rming 

intramolecular bonding in three-dimension (3D)[34]. 
There are different factors in AAs affecting protein 
folding such as their intrinsic nature upon which 
they are classified, hydrogen bonding, and van der 
Waals interactions[35]. Hence, the composition and the 
sequence of AAs are all essential for protein functions.

Mechanical properties are influenced by structural 
property of any materials including crystal, glass, 
water, etc. Protein or peptides differ from other 
materials as some of their regions could be more 
flexible than other regions. This could be due to the 
permutation and the combination of chain of different 
amino acids. Identifying the regions of flexibility and 
rigidity in peptides and proteins enable us to understand 
the mechanism of protein folding[36,37]. Using accurate 
method such as density functional theory (DFT) to 
calculate mechanical properties of a protein or peptides 
is expensive[38] . Before we investigate more complex 
proteins, we start with simpler systems such as AAs. 
AAs are small biological molecules and applying 
strains are difficult to conduct experimentally. Among 
computational approaches, ab initio DFT calculation is 
known for its reliability and accuracy. In this work, we 
have calculated mechanical properties of 20 canonical 
AAs immersed in water using the ab initio method. 
The mechanical properties such as bulk modulus, shear 
modulus, Young’s modulus, and Poisson’s ratio have 
been calculated using 17 different strain percentages. 

2. Models and Methods 
The structures of the 20 AAs are derived from 
PubChem[39]. PubChem compound identification (CID) 
5950 (Ala), 6322 (Arg), 6267 (Asn), 5960 (Asp), 5862 
(Cys), 5961 (Gln), 33032 (Glu), 750 (Gly), 6274 (His), 
6306 (Ile), 6106 (Leu), 5962 (Lys), 6137 (Met), 6140 
(Phe), 145742 (Pro), 5951 (Ser), 6288 (Thr), 6305 
(Trp), 6057 (Tyr), and 6287 (Val) were used. All AAs 
were solvated using Packmol[40] with solvation shell 
size of 3 Å for consistency. As the size of all AAs 
differ from each other so does the number of water 
molecules added in each AAs (shown in Table 1). 
Gly is the smallest AA with only 19 water molecules 
added. Whereas Trp is the largest AA having 48 water 
molecules added. As an example, we show the ball 
and stick figure of solvated Ala in Figure 1. Water 

molecules were added for two reasons: 1) to mimic 
periodic boundary conditions in VASP calculation and 
2) the presence of water is real in all biomolecular 
systems. 

Table 1: List of 20 solvated AAs models with water 
molecules added and the total number of atoms in each 

solvated amino acid.

AAs No. of H2O No. of atoms
Ala 26 91
Arg 41 149
Asn 31 110
Asp 31 109
Cys 25 89
Gln 36 128
Glu 34 121
Gly 19 67
His 38 134
Ile 30 112
Leu 31 115
Lys 38 138
Met 35 125
Phe 35 128
Pro 30 107
Ser 25 89
Thr 30 107
Trp 48 171
Tyr 36 132
Val 30 109

Figure 1. Ball and stick sketch of Ala in water box. Grey: C, 
red: O, blue: N, light pink: H.

We used the DFT-based package Vienna ab initio 
simulation package (VASP)[41] for optimization of 
solvated AAs. In VASP, we used projector augmented 
wave (PAW)[42,43] method with Perdew-Burke-Ernzerhof 
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We used the DFT-based package Vienna ab initio 
simulation package (VASP)[41] for optimization of 
solvated AAs. In VASP, we used projector augmented 
wave (PAW)[42,43] method with Perdew-Burke-Ernzerhof 
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(PBE)[42] exchange correlation functional within the 
generalized gradient approximation (GGA). PBE is 
one of the best GGA available in VASP. We are aware 
of vdW/dispersive corrections and will include them 
in our future research. We will then be able to identify 
if it makes any significant changes in mechanical 
properties.

We have experience in calculating mechanical 
properties for different materials ranging such as 
suolunite crystal and silica binding peptide[44], metal 
organic framework[45], crystals[46], glasses[47], and some 
complex system[48]. Based on our experience, we used 
energy cut off 600 eV with electronic convergence of 
10-5 eV, ionic convergence of -10-3 eV, and a single 
k-point sampling. The fully optimized structure is then 
used to calculate the elastic coefficients (Cij) using 
VASP. Cij are calculated using the stress versus strain 
approach of Nielsen and Martin scheme[49]. A strain 
(ε) is applied to the optimized structure according to 
Hooks law:

  (1) 

where stress component σi (i = 1 to 6) is linearly 
dependent to the applied strain εj(j = 1 to 6) under 
small deformation. The stress tensors xx, yy, zz, yz, zx, 
and xy are used in corresponding strain. Equation (1) 
gives six sets of linear equations with six components 
of stress and 21 elastic constants. In the current study, a 
wide range of strain (ε) is applied to each solvated AAs, 
they are ±0.01%, ±0.015%, ±0.02%, ±0.025%, ±0.03%, 
±0.035%, ±0.1%, ±0.25%, ±0.4%, ±0.5%, ±0.7%, 
±1%, ±1.5%, ±1.75%, ±2%, ±2.25%, and ±2.5%. A 
general practice is to use the higher strain percentage 
for soft materials[50]. We used up to 2.5% strain. The 
calculated elastic constants Cij and compliance tensor 
Sij are used to calculate mechanical properties using 
Voigt’s approach, Reuss approach, and Voigt–Reuss–
Hill approximation.

The Voigt’s approach[51] gives the upper limit of bulk 
modulus KVoight and shear modulus GVoight.

  (2)

  (3)

The Reuss’s approach[52] gives the lower limit of bulk 
modulus KReuss and shear modulus GReuss.

  (4)

  

  (5)
The Hill’s approach average Voigt and Reuss 

approaches known as Voight–Reuss–Hill approximation 
(VRH)[53].

  (6)

  (7)

  (8)

  (9)

where, E is Young’s modulus and η is Poisson’s ratio.

3. Results
3.1 Mechanical Properties of Amino Acids.
We have calculated the mechanical properties of 20 
solvated AAs models. These mechanical properties 
consist of bulk modulus (K), shear modulus (G), 
Young’s modulus (E), and Poisson’s ratio (η) as shown 
in Figure 2. Using trial-and-error technique each AA 
has mechanical property result for 17 strains: 0.01%, 
0.015%, 0.02%, 0.025%, 0.03%, 0.035%, 0.1%, 0.25%, 
0.4%, 0.5%, 0.7%, 1%, 1.5%, 1.75%, 2%, 2.25%, and 
2.5%.

Let us start with the first AA, Ala shown in Figure 
2(a). The mechanical properties K, G, E and η have 
high fluctuations in strains from 0.01% to 0.1%. This is 
quite normal since the model structure is not a compact 
crystal but a solvated model. It contains voids that may 
lead to some uncertainty in the structure and properties. 
With the increase in the strain, the mechanical 
properties show much less fluctuations. A higher strain 
is known to be more suitable for soft materials with 
more reliable mechanical properties[50]. The mechanical 
properties from strain 0.1% to 2.5% show relatively 
closer and reasonable values, in contrast to the extreme 
fluctuations in the lower strains. We have chosen results 
from strain 0.1% to 2.5% for further analysis. K, G, E 
and η fluctuates in the range of 3.00–3.85 GPa, 2.78–
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3.08 GPa, 6.38–7.27 GPa, and 0.14–0.19 respectively. 
As the strain percentage increases, K, G, and E show 
a decreasing trend with a notable peak at 0.5% strain. 
Poisson’ s ratio (η) also shows a similar trend with 

slightly higher and lower peaks. We are unable to 
compare our values with any other studies, as there are 
no such experiments or theoretical calculations done.
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Figure 2. Bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio of 20 AAs in water box.

Unlike other AAs, Gly (shown in Figure 2(h)) and 
Met (shown in Figure 2(m)) still have high fluctuations 
from 0.01% to 0.025% strain. Met has a slightly 
higher η of 0.35 at 0.01% strain, which is reasonable. 
However, Gly has a negative η of -0.51 at 0.1% strain. 
Negative Poisson’s ratio is plausible for auxetic 
materials. Instead of thinning, the material becomes 
thicker when stretched[54]. This value is not retained 
at higher strain. Besides, Gly does not show negative 
Poisson’s ratio at strains lower than 0.1%. Hence, 
we consider this negative value an anomaly. Usually, 
materials have positive η since materials resist change 
in volume (measured by K) in comparison to resistance 
for change in the shape (measured by G). Another 
interesting fact about Gly and Met is they fall under 
special AAs having hydrophobic side chains. 

Comparing all minimum and maximum values of 
mechanical properties for strains from 0.1% to 2.5% 
except for Gly, which was analyzed from 0.25% to 
2.5%, we have following observations: 

1) Poisson’s ratio (η) for all solvated AAs falls under 
the range 0.12–0.35. Please note η for cork is 0[55], which 
means that if it is compressed or stretched the width or 
diameter remains the same. Whereas rubber with η of 0.5[56] 
implies that it requires smaller stress to deform. The lower 
the η, the more resistant is the material to deformation. 
Other examples that fall under closer η range as of AAs 
are polyacrylamide (0.24–0.33)[57] and cancerous skin 
tissue (0.43)[58]. However, these materials cannot be 

directly compared with the solvated AAs because η 
is just one property, and these materials may have 
different K, G, and E. Gly has the lowest η of 0.12 at 
2.5% strain whereas Met has the highest η of 0.35 at 
0.1% strain.

2) Bulk modulus (K) for all solvated AAs models 
falls under the range of 2.47–5.85 GPa. Rubber has 
K of 1.5–2 GPa[59]. Some examples of K for liquids 
are water (2.15 GPa), Sulfuric acid (3.0 GPa), and 
Glycerine (4.35 GPa)[60]. The lower the bulk modulus 
K, the higher is the compression in the material. It is 
important to point out that the calculated bulk modulus 
range for solvated AAs can be closer or higher than 
water as this shows the behavior of AAs. Gly has 
lowest K of 2.47 GPa at 2.5% strain whereas Glu has 
highest K of 5.85 GPa at 2.5%.

3) Shear modulus (G) for all solvated AAs models 
falls in the range of 1.71–3.79 GPa. Some examples 
of G are: chalk (3.2 GPa)[61,62], wood (4 GPa)[63], and 
rubber (0.0006 GPa)[64]. G measures the rigidity of the 
material. Solvated AAs models have higher G than 
that of rubber. AAs needs a little larger force to be 
deformed in comparison to rubber. Met has the lowest 
G of 1.71 GPa at 0.1% strain showing lower rigidity 
whereas Gln has highest G of 3.79 GPa at 0.1% strain 
showing higher rigidity.

4) Young’s modulus (E) for all AAs falls under 
the range 4.62–9.08 GPa. Some examples of E are: 
medium-density fiberboard (4 GPa)[65], bone (14 
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GPa)[66], and rubber (0.01–0.1 GPa)[16]. E measures the 
tensile or compressive stiffness of material when the 
force is applied lengthwise. The higher the E the stiffer 
is the material. Rubber with lower E value shows its 
flexibility. Met has the lowest E of 4.62 GPa at 0.1% 
strain showing relative flexibility whereas Gln has 
the highest E of 9.08 GPa at 0.1% strain showing less 
flexibility.

In the literature, Azuri et al[16] reported Young’s 
modulus of α-glycine, γ-glycine, L-alanine, DL-serine, 
and glycylglycine to be 26–94 GPa, 19–75 GPa, 15–68 
GPa, 11–31 GPa, and 14–91 GPa respectively. Ji et 
al[15] have calculated the Young’s modulus of L-Phe 
and L-Tyr to be 13.6±6.07 GPa and 177.03±54.39 
GPa. However, Azuri et al and Ji et al have studied 
mechanical properties of pure AAs crystals whereas we 
have studied AA solvated by water molecule hence the 
difference in results is obvious. 

3.2 Strain Percentage-based Analysis
Analyzing 20 AAs mechanical properties in each strain 
percentage will show comparative nature of AA. Here 
in, we compare 20 AAs for each strain from 0.1% to 
2.5% (11 data points) in Figure 3 which shows a clear 
picture of the highest and lowest mechanical properties, 
some of which were mentioned in section 3.1. There 
are few highs and lows in all mechanical properties in 
different strains, showing the peculiar nature of AAs. 
Let us start with strain 0.1% (shown in Figure 3(a)). 
which has more fluctuations than other strains and falls 
under the boundary of lower deformation. At 0.1% 
strain Met has lowest G, lowest E, and highest η and 
Gln has highest G and E. Some AAs show a similar 
feature in most of the strain percentages. Following are 
our observations for the AAs with lower and higher 
mechanical properties. 

1) Gly has the lowest K in most strains except at 0.7% 
indicating Gly is more compressible than other AAs. 
This could be because Gly is the simplest AA and has 
a hydrogen atom in its side chain[35]. Ala is the next 
simplest AA with side chain of a methyl group (-CH3)
[35] and has lower K in 0.7%, 0.25%, 0.4%, 1.5%, 1.75%, 
2%, 2.25%, and 2.5% strains. Glu and Asn show higher 
K at most strains. Glu is negatively charged and is 
known as one of the strongest helix formers[35]. Another 
negatively charged AA is Asp, which shows higher K 
at 0.1%, 0.25%, 0.4%, 0.5%, and 0.7% strains. It is 

interesting to notice both Asp and Asn, an uncharged 
derivative of Asp, have higher K. Asp contains 
carboxylic acid as a terminal whereas Asn contains 
carboxamide as a terminal. Trp with hydrophobic 
side chain shows higher K at 1%, 1.5%, 1.75%, 2%, 
2.25%, and 2.5% strains. Pro shows highest K at 0.1%. 
However, Pro does not has higher K at other strains 
showing that some AAs may have different feature 
under different strains. 

2) Ser and Met have lower G under most of the 
strains implying they are less rigid in nature. Ser has 
uncharged polar side chain and has hydroxyl group 
making it hydrophilic whereas Met has hydrophobic 
side chain. Another AA with hydrophobic side chain 
and lower G under 0.1%, 0.5%, 0.7%, 1%, 1.5%, 1.75%, 
2%, 2.25%, and 2.5% strain is Tyr. These hydrophobic 
AAs tend to form clusters to avoid contact with water 
and are known to stabilize soluble proteins. Glu, a 
negatively charged AA, also has lower G under strains 
0.5%, 1%, 1.75%, 2%, and 2.5%. Val, Trp, and His 
have higher G at most strains. Both Val and Trp have 
hydrophobic side chains and His has positive side 
chains. Gln has higher G at 0.1%, 0.4%, and 0.7% 
strains, Ala has higher G at 1%, 1.5%, 1.75%, 2%, 
2.25%, and 2.5% strains, and Arg has higher G at 2% 
and 2.5% strains. Gln has uncharged polar side chain, 
Ala has uncharged nonpolar side chain and Arg has 
positive side chains. These complex features imply that 
the basic classification of AAs is unable to explain their 
mechanical properties.

3) Met and Tyr have lower E under most strains 
making them relatively flexible. In addition, Ser has 
lower E at 0.25%, 0.4%, 1%, 1.5%, 1.75%, 2%, and 
2.5% strains. Some G and E follow similar trends i.e., 
Met, Tyr, and Ser also have lower G. Whereas Gly with 
lower E at 0.1%, 0.25%, 0.5%, 1%, 1.75%, 2.25%, and 
2.5% strains has a lower K. Showing similar nature 
with higher G His, Trp, and Val also have higher E 
in most strains. Gln, with a higher G value, also has 
higher E at 0.1%, 0.5%, 0.7%, 2.25%, and 2.5% strains. 
His, Trp, Val, and Gln with relatively higher E indicates 
their stiff nature.

4) Gly, Ala, and Val have lower η. Both Gly and Ala 
also have lower K and some K and η follow similar 
trends. Arg have lower η at 0.75, 1%, 1.5%, 1.75%, 2%, 
2.25%, and 2.5%. With the higher K, Asn and Glu also 
have higher η under most strains. Met has a noticeably 
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GPa)[66], and rubber (0.01–0.1 GPa)[16]. E measures the 
tensile or compressive stiffness of material when the 
force is applied lengthwise. The higher the E the stiffer 
is the material. Rubber with lower E value shows its 
flexibility. Met has the lowest E of 4.62 GPa at 0.1% 
strain showing relative flexibility whereas Gln has 
the highest E of 9.08 GPa at 0.1% strain showing less 
flexibility.

In the literature, Azuri et al[16] reported Young’s 
modulus of α-glycine, γ-glycine, L-alanine, DL-serine, 
and glycylglycine to be 26–94 GPa, 19–75 GPa, 15–68 
GPa, 11–31 GPa, and 14–91 GPa respectively. Ji et 
al[15] have calculated the Young’s modulus of L-Phe 
and L-Tyr to be 13.6±6.07 GPa and 177.03±54.39 
GPa. However, Azuri et al and Ji et al have studied 
mechanical properties of pure AAs crystals whereas we 
have studied AA solvated by water molecule hence the 
difference in results is obvious. 

3.2 Strain Percentage-based Analysis
Analyzing 20 AAs mechanical properties in each strain 
percentage will show comparative nature of AA. Here 
in, we compare 20 AAs for each strain from 0.1% to 
2.5% (11 data points) in Figure 3 which shows a clear 
picture of the highest and lowest mechanical properties, 
some of which were mentioned in section 3.1. There 
are few highs and lows in all mechanical properties in 
different strains, showing the peculiar nature of AAs. 
Let us start with strain 0.1% (shown in Figure 3(a)). 
which has more fluctuations than other strains and falls 
under the boundary of lower deformation. At 0.1% 
strain Met has lowest G, lowest E, and highest η and 
Gln has highest G and E. Some AAs show a similar 
feature in most of the strain percentages. Following are 
our observations for the AAs with lower and higher 
mechanical properties. 

1) Gly has the lowest K in most strains except at 0.7% 
indicating Gly is more compressible than other AAs. 
This could be because Gly is the simplest AA and has 
a hydrogen atom in its side chain[35]. Ala is the next 
simplest AA with side chain of a methyl group (-CH3)
[35] and has lower K in 0.7%, 0.25%, 0.4%, 1.5%, 1.75%, 
2%, 2.25%, and 2.5% strains. Glu and Asn show higher 
K at most strains. Glu is negatively charged and is 
known as one of the strongest helix formers[35]. Another 
negatively charged AA is Asp, which shows higher K 
at 0.1%, 0.25%, 0.4%, 0.5%, and 0.7% strains. It is 

interesting to notice both Asp and Asn, an uncharged 
derivative of Asp, have higher K. Asp contains 
carboxylic acid as a terminal whereas Asn contains 
carboxamide as a terminal. Trp with hydrophobic 
side chain shows higher K at 1%, 1.5%, 1.75%, 2%, 
2.25%, and 2.5% strains. Pro shows highest K at 0.1%. 
However, Pro does not has higher K at other strains 
showing that some AAs may have different feature 
under different strains. 

2) Ser and Met have lower G under most of the 
strains implying they are less rigid in nature. Ser has 
uncharged polar side chain and has hydroxyl group 
making it hydrophilic whereas Met has hydrophobic 
side chain. Another AA with hydrophobic side chain 
and lower G under 0.1%, 0.5%, 0.7%, 1%, 1.5%, 1.75%, 
2%, 2.25%, and 2.5% strain is Tyr. These hydrophobic 
AAs tend to form clusters to avoid contact with water 
and are known to stabilize soluble proteins. Glu, a 
negatively charged AA, also has lower G under strains 
0.5%, 1%, 1.75%, 2%, and 2.5%. Val, Trp, and His 
have higher G at most strains. Both Val and Trp have 
hydrophobic side chains and His has positive side 
chains. Gln has higher G at 0.1%, 0.4%, and 0.7% 
strains, Ala has higher G at 1%, 1.5%, 1.75%, 2%, 
2.25%, and 2.5% strains, and Arg has higher G at 2% 
and 2.5% strains. Gln has uncharged polar side chain, 
Ala has uncharged nonpolar side chain and Arg has 
positive side chains. These complex features imply that 
the basic classification of AAs is unable to explain their 
mechanical properties.

3) Met and Tyr have lower E under most strains 
making them relatively flexible. In addition, Ser has 
lower E at 0.25%, 0.4%, 1%, 1.5%, 1.75%, 2%, and 
2.5% strains. Some G and E follow similar trends i.e., 
Met, Tyr, and Ser also have lower G. Whereas Gly with 
lower E at 0.1%, 0.25%, 0.5%, 1%, 1.75%, 2.25%, and 
2.5% strains has a lower K. Showing similar nature 
with higher G His, Trp, and Val also have higher E 
in most strains. Gln, with a higher G value, also has 
higher E at 0.1%, 0.5%, 0.7%, 2.25%, and 2.5% strains. 
His, Trp, Val, and Gln with relatively higher E indicates 
their stiff nature.

4) Gly, Ala, and Val have lower η. Both Gly and Ala 
also have lower K and some K and η follow similar 
trends. Arg have lower η at 0.75, 1%, 1.5%, 1.75%, 2%, 
2.25%, and 2.5%. With the higher K, Asn and Glu also 
have higher η under most strains. Met has a noticeably 
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higher η at 0.1%. Met, Lys, and Ser also have higher 
η in most of the strain. However, Asn and Glu are 

relatively more stretchable.

Figure 3. Bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio of solvated 20 AAs models for following strain 
percentages: (a) 0.1 (b) 0.25, (c) 0.4, (d)0.5, (e) 0.7, (f) 1 (g) 1.5, (h) 1.75, (i) 2, (j) 2.25, and (k) 2.5.

Figure 4. Vickers hardness () for 20 solvated AAs models for 11 strain percentages.



BME Horizon 46 of 50 Vol 1 Issue 1 2023

Hardness HV has been used as the most important 
property of materials. We have calculated hardness HV 
using Tian et al[67] formula HV = 0.92k1.137 G0.708, where k 
= G/K. Figure 4 shows hardness for all AAs. We can say 
that all 20 AAs fall under soft materials. For reference, 
diamond has a hardness of 95 GPa. The second hardest 
material is cubic boron nitride (66 GPa)[67]. Figure 4 
shows that there is difference in hardness in different 
strain percentages like other mechanical properties. 
AAs with overall relatively higher hardness are Ala, 
Arg, Gly, and Val. Gln, Trp have relatively higher 
hardness at 0.1% strain. Asn, Glu, Ser, and Thr have 
lower hardness. Some AAs such as Leu, Met, and 
Tyr have lower hardness at 0.1% strain. This shows 
that some AAs can behave differently under different 
strains. 

4. Conclusion
In this work, we have calculated mechanical properties 
of solvated AAs for the first time. Following are other 
observations: 

1) Gly and Ala have relatively lower K whereas Glu, 
Asn, Asp, and Trp have higher K.

2) Ser, Met, Glu, and Tyr have relatively lower G 
whereas Val, Trp, His, and Ala have higher G.

3) Met, Tyr, and Gly have relatively lower E whereas 
His, Trp, Val have higher E.

4) Gly, Ala, Val, and Arg have low η whereas Asn 
and Glu have relatively high η. 

5) All AAs are soft in nature based on lower HV. 
However, Ala, Arg, Gly, and Val have relatively high 
HV whereas Asn, Glu, Ser, and Thr have relatively low 
HV.

We conclude that some AAs retain their properties 
in most of the strains whereas some fluctuate. Even 
though the range of mechanical properties looks close, 
they have slight differences. In addition, we observed 
no clear relationship between the classification of 
AAs and their mechanical properties. About 16 out 
of 20 AAs have some prominent feature either in K, 
G, E, and η or in strain-based analysis. We would like 
to point out that, our work is just a starting point and 
we plan to calculate mechanical properties of a real 
biomolecules such as 1FUV[68,69]. 1FUV is a peptide 
sequence with the Arg-Gly-Asp (RGD). RGD has a 
higher affinity to a membrane protein called integrin 
hence RGD is used to target cancer cells. In addition, 

RGD has numerous applications in biomaterial design 
and biomedical devices. RGD is used as a candidate 
for wound healing, radiotracers in imaging, and 
implantable medical devices. The utilization of current 
result in analyzing the mechanical properties of 1FUV 
will be published in future. In addition, we will also 
focus on hydrogen bonding between AAs and water 
molecules as this also plays a discernable role in the 
mechanical properties using our experience of amino 
acids-amino acids bond pair[70] study in spike protein of 
SARS-CoV-2 via orthogonalized linear combination of 
atomic orbitals[71].
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Hardness HV has been used as the most important 
property of materials. We have calculated hardness HV 
using Tian et al[67] formula HV = 0.92k1.137 G0.708, where k 
= G/K. Figure 4 shows hardness for all AAs. We can say 
that all 20 AAs fall under soft materials. For reference, 
diamond has a hardness of 95 GPa. The second hardest 
material is cubic boron nitride (66 GPa)[67]. Figure 4 
shows that there is difference in hardness in different 
strain percentages like other mechanical properties. 
AAs with overall relatively higher hardness are Ala, 
Arg, Gly, and Val. Gln, Trp have relatively higher 
hardness at 0.1% strain. Asn, Glu, Ser, and Thr have 
lower hardness. Some AAs such as Leu, Met, and 
Tyr have lower hardness at 0.1% strain. This shows 
that some AAs can behave differently under different 
strains. 

4. Conclusion
In this work, we have calculated mechanical properties 
of solvated AAs for the first time. Following are other 
observations: 

1) Gly and Ala have relatively lower K whereas Glu, 
Asn, Asp, and Trp have higher K.

2) Ser, Met, Glu, and Tyr have relatively lower G 
whereas Val, Trp, His, and Ala have higher G.

3) Met, Tyr, and Gly have relatively lower E whereas 
His, Trp, Val have higher E.

4) Gly, Ala, Val, and Arg have low η whereas Asn 
and Glu have relatively high η. 

5) All AAs are soft in nature based on lower HV. 
However, Ala, Arg, Gly, and Val have relatively high 
HV whereas Asn, Glu, Ser, and Thr have relatively low 
HV.

We conclude that some AAs retain their properties 
in most of the strains whereas some fluctuate. Even 
though the range of mechanical properties looks close, 
they have slight differences. In addition, we observed 
no clear relationship between the classification of 
AAs and their mechanical properties. About 16 out 
of 20 AAs have some prominent feature either in K, 
G, E, and η or in strain-based analysis. We would like 
to point out that, our work is just a starting point and 
we plan to calculate mechanical properties of a real 
biomolecules such as 1FUV[68,69]. 1FUV is a peptide 
sequence with the Arg-Gly-Asp (RGD). RGD has a 
higher affinity to a membrane protein called integrin 
hence RGD is used to target cancer cells. In addition, 

RGD has numerous applications in biomaterial design 
and biomedical devices. RGD is used as a candidate 
for wound healing, radiotracers in imaging, and 
implantable medical devices. The utilization of current 
result in analyzing the mechanical properties of 1FUV 
will be published in future. In addition, we will also 
focus on hydrogen bonding between AAs and water 
molecules as this also plays a discernable role in the 
mechanical properties using our experience of amino 
acids-amino acids bond pair[70] study in spike protein of 
SARS-CoV-2 via orthogonalized linear combination of 
atomic orbitals[71].
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