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Abstract: Metabolic syndrome (MetS) is a complex disorder characterized by a set of interrelated metabolic 
abnormalities, such as central obesity, hypertension, dyslipidemia, and insulin resistance. It constitutes a 
major public health problem worldwide due to its association with an increased risk of cardiovascular disease, 
type 2 diabetes mellitus (T2DM) and other chronic diseases. Biomedical engineering (BME), through its 
interdisciplinary nature, has contributed significantly to the understanding, diagnosis, and treatment of MetS. 
The aim of this review article is to provide a comprehensive overview of the current state of research and 
advances in BME approaches to the study and management of MetS. The article will delve into diverse 
approaches, including computational and omics models, that have been used to improve our understanding 
of MetS. In addition, it will provide an overview of specialized devices that have been designed for the non-
invasive assessment of individuals with MetS.
Keywords: Metabolic syndrome; Diabetes; Obesity; Biomedical

Introduction

Metabolic syndrome (MetS) is a complex 
and increasingly prevalent disease that 
encompasses a set of interconnected 

metabolic risk factors[1]. This multisystem syndrome 
significantly increases the risk of developing severe 
health complications, such as cardiovascular disease 
(CVD)[2,3], type 2 diabetes mellitus (T2DM)[4] and even 
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certain types of cancer[5,6]. The diagnostic criteria for 
MetS typically include abdominal obesity, as defined 
by waist circumference measurements, combined 
with specific thresholds for other components such as 
elevated blood pressure, altered glucose metabolism 
(e.g., elevated fasting glucose or insulin resistance (IR), 
and abnormal lipid levels (e.g., elevated triglycerides 
and low HDL-cholesterol)[7]. Specific cut-off values 
for each component may vary slightly depending 
on the guidelines used, including those provided 
by organizations such as the National Cholesterol 
Education Program Adult Treatment Panel III (NCEP 
ATP III) or the International Diabetes Federation (IDF) 
(Table 1)[7]. The increasing global prevalence of MetS 
has become a major public health problem, primarily 
promoted by sedentary lifestyles, unhealthy dietary 

habits and genetic predisposition[8].
Biomedical engineering (BME) has a profound impact 

on MetS by revolutionizing the diagnosis, treatment, 
and understanding of this complex condition. Through 
the development of advanced imaging techniques, such 
as magnetic resonance imaging (MRI) and computed 
tomography (CT), biomedical engineers enable accurate 
and non-invasive assessment of MetS components 
Overall, BME advancements have the potential to 
transform the understanding, diagnosis, and management 
of MetS, leading to more effective and personalized 
healthcare strategies for individuals affected by 
this condition[9-11]. Understanding the underlying 
mechanisms, risk factors and potential interventions 
against MetS is crucial to address this burgeoning public 
health problem and promote global wellness.

Table 1. Diagnostic criteria for metabolic syndrome (MetS)

Criteria NCEP ATP III IDF

Abdominal obesity
Waist circumference

Men:  ≥ 102 cm ( > 40 in)
Women:  ≥ 88 cm ( > 35 in)

Waist circumference
Men: ≥ 94 cm

Women: ≥ 80 cm

Elevated blood pressure
 ≥ 130 mmHg systolic or ≥ 85 mmHg diastolic

Or
Pharmacological treatment

 ≥ 130 mmHg systolic or ≥ 85 mmHg diastolic
Or

Pharmacological treatment

Altered glucose metabolism
Fasting glucose ≥ 100 mg/dL

Or
Pharmacological treatment

Fastin glucose ≥ 100 mg/dl

Abnormal lipid levels

Triglycerides > 150 mg/dL
Or

Pharmacological treatment

Triglycerides  > 150 mg/dl
Or

Pharmacological treatment
HDL cholesterol
Men: < 40 mg/dL

Women: < 50 mg/dL
Or

Pharmacological treatment

HDL cholesterol
Men: < 40 mg/dl

Women: < 50 mg/dl
Or

Pharmacological treatment
Required criteria Any three of the five criteria Abdominal obesity plus any two of the four criteria

Recent reviews in the field of BME have highlighted 
innovative data integration approaches that hold great 
promise for advancing our understanding of MetS. 
These reviews highlight the importance of integrating 
data from diverse sources,  such as genomics, 
metabolomics, proteomics, and clinical parameters, to 
gain a comprehensive view of the complex interactions 

underlying the MetS. Using advanced computational 
techniques, machine learning algorithms, and systems 
biology approaches, these studies highlight the 
potential to unravel intricate metabolic pathways and 
identify new biomarkers that could improve early 
detection and personalized treatment strategies for 
MetS (Table 2)[9,10,12-15].

Table 2. Data integration approaches applied to understand and asses the metabolic syndrome (MetS)

Approach Summary Reference

Development of prediction models for MetS 
based on whole genome sequencing data

The relationship between single nucleotide polymorphism 
(SNP) of circadian clock genes and the development of MetS 
was studied. A prediction model for metabolic syndrome was 
constructed using logistic regression, random forest, adaboost 

and neural network

16



 Vol 1 Issue 2 2023

Continuation Table:
Approach Summary Reference

Use of computational models to describe 
long-term development of MetS in APOE3L.

CETP mice fed with a high-fat diet.

Computational modelling of energy balance in individuals with 
Metabolic Syndrome

MINGLeD was utilized in combination with analysis of 
dynamic adaptations in parameter trajectories. (ADAPT) to 
achieve a model library describing various phenotypes to 

analyze energy expenditure and energy balance.

17

Validation of artificial AI-based scores for 
MetS prediction

Different ML algorithms were trained to predict the MetS status 
of each subject according to clinical and biochemical data. 
Subsequently, a module was used to explain the developed 

models and thus extract new scores for MetS detection.

18

Combination of multi-omics and clinical 
information to characterize metabolic 
diseases molecularly and clinically.

Integration of metabolomics, proteomics, peptidomics and 
clinical information to elucidate latent molecular hallmarks 

and interrelationships of multiple metabolic diseases, including 
MetS, hyperglycemia, hypertension and T2DM.

19

Use of genetic and metabolomic analysis to 
identify metabolite biomarkers of MetS.

Multi-stage metabolomics analysis was used to identify 
metabolite biomarkers and subsequently construct a metabolite 

risk score for MetS. Subsequently, two-stage Genome-wide 
association studies (GWAS)analyses were used to identify SNPs 

associated with the metabolites.

20

Biomedical Engineering Approaches for 
Understanding Metabolic Syndrome
BME employs computational modeling and simulation 
techniques to enhance the understanding of MetS. 
Through the integration of data from genetics, omics 
technologies and clinical parameters, computational 
models can effectively capture the intricate interactions 
and dynamics occurring in the MetS (Figure 1)[21,22]. 
The development of MetS is characterized by complex 
interactions and feedback loops encompassing multiple 

time and space scales, from cellular to organismal 
levels[14]. Computational modeling techniques, such as 
constraint-based modeling and kinetic modeling, can 
be applied to these metabolic networks to simulate and 
analyze the metabolic perturbations associated with 
MetS[23]. These models make possible the simulation of 
the impact of genetic variations, lifestyle modifications 
and pharmaceutical treatments on MetS-related 
outcomes. 

Figure 1. Computational models for the understanding of metabolic syndrome (MetS).

Computational models are promising tools for 
understanding the complex dynamics underlying 
metabolic syndrome (MetS). These models employ 
mathematical and computational techniques to 
simulate and analyze the intricate interactions between 
various molecular and physiological components that 
contribute to the development and progression of MetS. 

Constraint-based models

In the 1980s, several data analysis approaches were 
developed to cope with the increasing amount of 
biological data available at that time, one of these 
approaches was the constraint-based models (CBM) [24]. 
Initially, the CBMs used mathematical algorithms to 
determine theoretical yields of metabolic pathways 



BME Horizon

and metabolite overflows[25]. Studies conducted 
at that time showed a good concordance between 
CBM predictions and measured cell behavior[26]. 
Leading the way for predicting phenotypes from a 
biochemically reconstructed network. Decades later, 
CBMs started to be used in the analysis of genotype-
phenotype relationships, based on the principle that 
biological organisms function within the limits and 
constraints imposed by their genetic and environmental 
components[27]. This approach facilitated the study of 
the global organization of cellular behavior, such as 
the structure of metabolic pathways[28] and metabolic 
fluxes[29]. CBMs can be utilized to study metabolic 
pathways and analyze how perturbations in these 
pathways might contribute to metabolic disorders. 
Several models have been designed to explain the 
development of metabolic dysfunction in multiple 
diseases[30-32].

Kinetic models 

The kinetic models were designed with the intention of 
addressing the limitations of CBMs[33]. They provide 
a distinct advantage in predicting the actions of living 
organisms under conditions far away from equilibrium. 
As a result, they extend the computational capacity 
to encompass cellular physiology, going beyond the 
steady-state assumption of CBMs[34]. Kinetic models 
are focused on describing the dynamic behavior of 
metabolic reactions using detailed mathematical 
equations that incorporate enzyme kinetics, metabolite 
concentrations, and regulatory factors[35]. Through 
simulating the kinetics of specific enzymes and 
reactions, kinetic models can elucidate the underlying 
mechanisms that contribute to metabolic dysregulation 
in MetS[36].

Model INtegrating Glucose and Lipid Dynamics 
(MINGLeD)

Recently, a new model has been designed, combining 
both in vivo and in silico models. A new data-driven 
physiological model called MINGLeD (Model 
INtegrating Glucose and Lipid Dynamics) has been 
developed to describe glucose, lipid and cholesterol 
metabolism. This model allowed the identification 
of distinct phenotypes inside the MetS and provided 
information on the underlying metabolic dysregulations 
by describing the development and long-term 
progression of the MetS[17,37]. 

Computational models, including the MINGLeD 
m o d e l ,  p r e s e n t  a n  i n n o v a t i v e  a p p r o a c h  t o 
unders tand ing  MetS ,  demons t ra t ing  severa l 
remarkable novelties and advantages in contrast 
to  convent iona l  methods [13,17].  F i r s t ly,  these 
computat ional  models  work dynamical ly and 
comprehensively, capturing the intricate interplay 
of diverse metabolic pathways and their effects on 
the MetS[27,34,36]. Unlike traditional static approaches, 
these models consider the dynamic nature of 
metabolic pathways, allowing for a more accurate 
representation of the underlying physiological 
dynamics in MetS[27,33]. Furthermore, the MINGLeD 
model specifically introduces a new dimension 
by integrating multiple omics data sources, such 
as genomics, metabolomics and lipidomics. This 
integration enhances a holistic understanding of MS 
by elucidating the complex relationships between 
genetic factors, metabolic intermediates, and lipid 
profiles. This approach facilitates the identification of 
previously missed biomarkers, potential therapeutic 
targets, and mechanisms insights that would be hidden 
by traditional methods of single data analysis[17,37,38].

Omics

In addition to the previously mentioned models, a new 
field of research has been added. The omics refers to a 
set of comprehensive techniques used to study various 
biological molecules, including genomics (study of 
genes)[39], transcriptomics (study of gene expression)[40], 
proteomics (study of proteins)[41], metabolomics (study of 
small molecules)[42] and epigenomics (study of chemical 
modifications of DNA)[43]. They provide a holistic view 
of the molecular alterations and interactions that occur 
in a biological system, shedding light on the underlying 
pathophysiology of diseases such as MetS[44]. Scientists 
have identified numerous genetic variants (FTO, TCF7L2, 
MC4R, etc.) associated with the development and 
progression of MetS disease through large-scale genomic 
studies and advanced sequencing technologies[45]. These 
gene variants are implicated in the regulation of body 
weight, energy balance and glucose metabolism. The study 
of these genetic markers provides a better understanding 
of the molecular mechanisms underlying MetS and allows 
researchers to identify potential therapeutic targets[19]. 

Metabolomics 

Another outstanding field that has improved the 
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understanding of MetS is metabolomics. Metabolomic 
studies have revealed distinct metabolic profiles in 
individuals with MetS compared to healthy individuals. 
These profiles often show alterations in metabolites 
involved in lipid metabolism, glucose, aminoacids 
and oxidative stress[46]. One of the objectives of 
metabolomics is to identify metabolites that could 
function as biomarkers of MetS. Recently a study 
identified metabolites associated with MetS, using 
LysoPC(14:0), LysoPC(15:0), propionyl carnitine, 
phenylalanine, and docosapentaenoic acid to construct 
a metabolite risk score to assess the risk of MetS. This 
score showed to have a dose-response relationship 
with MetS and metabolic abnormalities[20]. Globally, 
the use of omics approaches in MetS research provided 
valuable information on the genetic, molecular, and 
metabolic fundamentals of this complex disease. 
Further advancement of these technologies will hold 
significant potential for improving risk prediction, 
diagnosis, treatment, and prevention strategies, leading 
eventually to enhanced health outcomes for people 
affected by MetS.

Biomedical Engineering Tools for Assessing 
Metabolic Syndrome
BME tools have a crucial role in the assessment of 
MetS. They cover a wide range of technologies and 
techniques designed to measure and assess various 
parameters associated with MetS. For example, body 
composition analyzers (BCAs), such as bioelectrical 
impedance analysis (BIA)[47] and dual-energy X-ray 
absorptiometry (DEXA)[48], provide information on 
body fat percentage, muscle mass and visceral fat 
levels. Furthermore, continuous glucose monitoring 
(CGM)[49] systems allow blood glucose levels to be 
monitored over time, providing valuable data on 
glucose metabolism and diabetes risk. Beyond glucose 
monitoring, blood pressure monitoring devices and 
cholesterol analysis tools support the assessment 
of hypertension and lipid abnormalities[50]. Finally, 
metabolic rate measurement tools, such as indirect 
calorimetry devices, estimate energy expenditure 
and metabolic rate[51]. These BME tools contribute 
to the early detection, diagnosis and management of 
MetS, allowing healthcare professionals making more 
informed decisions and providing personalized care to 
individuals at risk.

Body Composition Analyzers

During weight gain, body composition undergoes a 
transformation characterized by a higher accumulation 
of fat compared to lean mass. This composition 
change is linked to an increase in insulin resistance 
and the onset of MetS. Nevertheless, excessive fat 
accumulation is not the main metabolic risk factor, 
the location where fat is stored determines the 
risk[52]. Abdominal adiposity is a pivotal component 
of MetS because it contributes to the development 
of insulin resistance and cardiometabolic diseases 
through visceral adipose tissue (VAT) dysfunction and 
adipokine dysregulation. Anthropometric measurements 
do not accurately reflect visceral adiposity and cannot 
differentiate between subcutaneous and visceral 
obesity. In the last few decades, new technologies 
have been developed to accurately determine the 
internal composition of the body. BCAs provide a 
comprehensive body composition analysis, including 
measurements of fat mass, muscle mass, bone density 
and hydration levels[53]. 

One of the most used methods is BIA. Through 
the measurement of the impedance of electrical 
currents passing through the body, BIA provides 
valuable information on the distribution of body fat, 
muscle mass and water content[54]. BIA devices send 
a harmless electrical signal through the body and 
measure the resistance encountered. Using algorithms 
and mathematical models, these devices can estimate 
body fat percentage, muscle mass and other relevant 
parameters[55]. Multiple studies have evaluated the 
use of BIA in MetS assessment. These studies have 
demonstrated that the measurement of VAT using BIA 
is a useful method for predicting the risk of MetS. 
In addition, it has been observed that total body fat 
and visceral fat levels are higher in subjects with 
MetS[47,53,56,57]. BIA offers a convenient and accessible 
way to monitor changes in body composition over 
time, making it a valuable tool for people who want to 
improve their health and fitness. 

Individuals with MetS are at increased risk for 
osteoporosis and fractures because this condition is 
commonly associated with hormonal imbalances, 
reduced physical activity and vitamin D deficiencies[58]. 
DEXA a non-invasive imaging technique has proven 
to be valuable in assessing body composition and 
bone density. DEXA scans can detect changes in bone 
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density, which can help in identifying individuals 
who may require intervention for preventing fractures 
and maintaining bone health[59]. While initially 
utilized for measuring bone mineral density, DEXA 
has increasingly become recognized for its role in 
the assessment of MetS[60]. DEXA provides accurate 
measurements of total body fat, lean mass, regional 
fat distribution and VAT quantification, factors that 
have been strongly associated with IR and metabolic 
abnormalities of MetS[61]. In addition, DEXA scanners 
provide an assessment of sarcopenia, an important 
feature of individuals with MetS, through the 
measurement of appendicular lean mass[62]. 

Glucose sensing devices

Abnormalities in glucose metabolism play a key role in 
the development and progression of MetS. One of the 
main abnormalities is insulin resistance, in individuals 
with IR, the cells are less responsive to the effects 
of insulin, resulting in elevated levels of glucose in 
the bloodstream. This condition typically preludes 
the development of T2DM[63]. IR is strongly related 
to another key abnormality of glucose metabolism 
observed in MetS: glucose intolerance. Glucose 
intolerance is the inability of the body to effectively 
metabolize glucose after consuming a meal. This leads 
to elevated blood glucose levels, but not high enough 
to fulfill the criteria for T2DM[64]. In addition to IR 
and glucose intolerance, individuals with MetS often 
have elevated fasting blood glucose levels, commonly 
described as hyperglycemia. Chronic elevated 
blood glucose levels contribute to the development 
of oxidative stress, inflammation and endothelial 
dysfunction, factors involved in the pathogenesis of 
CVD[65]. 

As mentioned previously, alterations in glucose 
metabolism have a major impact on the health of 
individuals with MetS. CGM devices provide valuable 
real-time information on blood glucose levels, CGM 
systems consist in a small sensor that is inserted under 
the skin and measures glucose levels in the interstitial 
fluid. These devices provide real-time glucose 
readings at regular time intervals, usually every few 
minutes, allowing users to monitor their glucose levels 
continuously throughout the day[66]. The continuous 
monitorization of glucose levels is particularly useful 
for controlling IR. Individuals with IR frequently 
report fluctuations in their blood glucose levels, 

making it difficult to achieve stable glycemic control. 
CGM devices provide real-time information, allowing 
individuals to quickly identify and effectively manage 
episodes of hyperglycemia or hypoglycemia[67]. The use 
of CGM devices must be performed in collaboration 
with healthcare professionals to guarantee proper 
interpretation of glucose readings and adequate 
adaptations of treatment regimens.

Non-invasive blood pressure monitoring

The IR is a key factor in the development of 
other components of the MetS. An example is 
the development of alterations in blood pressure. 
IR triggers impaired nitric oxide production and 
endothelial dysfunction. Resulting in a reduction of 
vasodilation and an increase in peripheral vascular 
resistance, contributing to elevated blood pressure 
levels. Furthermore, the abnormal lipid profile and 
abdominal obesity also contribute to these alterations 
by activating proinflammatory pathways, oxidative 
stress and release of adipokines and inflammatory 
mediators, respectively[65,68]. Additionally, the renin-
angiotensin-aldosterone system (RAAS) is commonly 
dysregulated in MetS, contributing to hypertension. 
Activation of the RAAS pathway leads to increased 
production of angiotensin II and aldosterone, 
which promotes sodium and water retention. These 
mechanisms further elevate blood pressure levels in 
individuals with MetS[69,70].

The presence of hypertension in MetS increases 
considerably the risk of cardiovascular complications, 
such as cardiopathies, strokes and renal diseases. 
Therefore, it is essential to effectively control blood 
pressure in individuals with MetS to minimize these 
risks. Continuous blood pressure monitoring with 
noninvasive devices supports healthcare professionals 
in the assessment and control of blood pressure 
fluctuations[71]. The most commonly used methods 
include automatic arm cuff devices, wrist monitors 
and ambulatory blood pressure monitoring (ABPM). 
Automated arm cuff devices are frequently used in 
clinics and health centers. They consist in placing an 
inflatable cuff around the arm, which is connected 
to an electronic device. The cuff inflates and deflates 
automatically, while sensors detect blood pressure 
oscillations. The devices provide accurate and 
reliable measurements of systolic and diastolic blood 
pressure[72-74]. On the other side, wrist blood pressure 
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monitors use an inflatable cuff placed over the radial 
artery that automatically inflates and deflates to 
measure blood pressure. Although wrist blood pressure 
monitors are convenient, it is important to consider that 
their accuracy can be compromised by body position, 
movement and individual variations[75-77]. Ultimately, 
ABPM is a useful tool for assessing blood pressure 
variations over a 24-hour period. ABPM consists of 
wearing a portable device that automatically measures 
blood pressure at regular intervals throughout the day 
and night. This method provides a complete profile of 
blood pressure variations during daily activities, sleep, 
and a variety of conditions, enabling a more accurate 
assessment of blood pressure control in individuals 
with MetS[78,79]. Through the periodical monitoring of 
blood pressure levels, healthcare professionals are able 
to detect and follow-up changes in blood pressure, 
determine the effectiveness of lifestyle modifications 
and medications, and take informed decisions about 
treatment[71].

The role of wearables in real-time

In the last decade, wearable devices have become 
powerful tools in healthcare, enabling real-time 
monitoring and assessment of various physiological 
parameters. These devices, which range from fitness 
trackers to advanced health monitoring wearables, 
offer several key advantages in assessing MetS[80]. 
The first advantage is that wearables allow continuous 
monitoring of essential parameters such as physical 
activity levels, heart rate, blood pressure, glucose 
levels and sleep patterns. This real-time data provides 
a complete and dynamic view of an individual's 
metabolic health, allowing for a more accurate 
assessment compared to a one-time measurement[81]. 
Moving further into MetS treatment, wearables 
generate personalized data profiles based on each 
individual's unique physiological responses. This 
information enables personalized interventions and 
lifestyle modifications, which are the cornerstone 
of MetS treatment[82,83]. It is noteworthy that the 
information obtained with these devices should be 
analyzed in conjunction with the clinical information of 
each individual[84]. Nevertheless, in order to widespread 
and effectively use wearables for MetS assessment, 
a number of challenges need to be addressed. These 
include ensuring the accuracy and reliability of the 
data, by conducting larger studies. Additionally, 

privacy and security issues must be addressed, and data 
generated by wearables must be integrated into existing 
healthcare systems[85,86].

Biomedical Engineering Interventions for 
Managing Metabolic Syndrome
Previously we have discussed how BME contributed 
to enrich the understanding of the pathophysiology and 
assessment of MetS. Nevertheless, BME interventions 
have emerged as promising approaches for the 
management of MetS. For instance, we have previously 
discussed that the development of wearable devices 
equipped with sensors can continuously monitor 
physiological parameters such as blood glucose levels, 
heart rate and physical activity. These devices provide 
real-time data that can aid in personalized management 
and facilitate timely interventions. 

Targeted drug delivery systems have emerged as a 
promising approach to treat MetS by taking a more 
comprehensive approach and directly addressing the 
underlying molecular pathways and mechanisms 
involved in the development and progression of MetS. 
Targeted drug delivery systems refer to methods or 
technologies designed to deliver drugs specifically 
to the affected tissues or cells while minimizing their 
exposure to healthy tissues. This approach allows 
for higher drug concentrations at the target site, 
which can lead to improved therapeutic outcomes 
and reduced adverse effect. One of the most widely 
studied strategies for the targeted delivery of drugs 
against MetS is nanoparticles[10]. Several types of 
nanoparticles have been explored for targeted drug 
delivery in MetS, including liposomes. Liposomes, 
a unique type of nanodrug delivery system, are 
spherical vesicles composed of one or more concentric 
phospholipid bilayers enclosing an aqueous core. 
There are several advantages of liposomes, such as 
reduced drug toxicity compared to free drugs and 
enhancement of immune system of the organism[87]. 
One of the key advantages of liposomes in the context 
of MetS is their ability to improve the solubility and 
stability of drugs. Many drugs used in the treatment 
of MetS, such as anti-inflammatory drugs or lipid-
lowering drugs, often have low water solubility. By 
encapsulating these drugs within liposomes, their 
solubility can be enhanced, resulting in improved drug 
delivery and bioavailability[88-90]. Nevertheless, it has 
been observed that other types of nanoparticles can also 
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be useful in the treatment of MetS, such as polymeric 
nanoparticles[91], exosomes[90,92], nanoemulsion[93], 
and others. Nanoparticles have demonstrated a great 
potential for targeted drug delivery systems in the 
treatment of MetS. With the continued advances in 
nanotechnology, these innovative approaches may 
revolutionize the treatment of MetS and improve 
patient outcomes. Continuous research and investment 
in this field is crucial to unlock the full potential 
of nanoparticles in the fight against MetS and its 
associated complications.

The Use of Artificial Intelligence and 
Machine Learning
In recent years, the integration of technological 
advancements, particularly artificial intelligence 
(AI) and machine learning (ML), has emerged as a 
promising approach for understanding and managing 
MetS[16,94]. AI refers to the use of computers and 
technology to stimulate intelligent behavior and critical 
thinking comparable to a human being[95], while ML 
is an implementation of AI and computer science, 
employing algorithms that refine accuracy through 
experiential learning[96]. ML approaches have been 
noted for their use in MetS risk assessment, where 
anthropometric, clinical and histological data are used 
to construct risk models[53,97,98].These models have 
demonstrated efficient performance in predicting MetS 
and have facilitated the evaluation of how lifestyle 
changes, genetics and environmental factors impact 
such prediction[16,18,99,100]. 

The future perspectives regarding the use of AI 
and ML for the assessment and treatment of MetS are 
immensely promising and herald a transformative era 
in healthcare. As these technologies move forward, 
they are primed to transform the way MetS is 
understood, diagnosed, and treated, offering a multitude 
of exciting possibilities[101,102]. AI and ML algorithms 
can be exploited to predict an individual's risk of 
developing MetS based on a constellation of factors. 
These predictions enable healthcare professionals to 
implement targeted preventive measures, allowing 
individuals to make informed lifestyle changes 
before the onset of MetS[103,104]. Going beyond MetS 
prediction, AI-based simulations can accelerate the 
discovery and development of new pharmaceutical 
interventions for MetS. By modeling interactions 

between potential drug candidates and metabolic 
pathways, AI can identify promising compounds for 
further exploration. This could lead to the creation of 
innovative treatments that target specific components 
of MetS more effectively[105,106].

Conclusions
Throughout this review we have discussed the role 
that BME plays in the understanding and assessment 
of MetS (Figure 2). Starting with the introduction of 
CBMs in the 1980s and continuing into modern era 
with the use of AI and ML, BME has evolved along 
with our understanding of the MetS. Furthermore, 
progress has been reflected in the introduction of 
devices that allow continuous assessment of individuals 
with MetS, and have also proven useful in assessing 
the risk of other MetS-associated diseases. Although 
BME interventions offer great potential for treating 
MetS, several challenges need to be addressed to 
maximize their potential and drive future advances in 
this field. One of the main challenges is the complexity 
and heterogeneity of MetS itself. MetS encompasses a 
wide range of interconnected metabolic abnormalities, 
each with its own characteristics and underlying 
mechanisms. The development of interventions that 
can effectively address multiple aspects of MetS 
simultaneously remains a major challenge. Another 
challenge is the translation of BME innovations from 
the laboratory to clinical practice. While there have 
been exciting developments in diagnostics and drug 
delivery systems, many of these advancements are still 
in the early stages of research or limited to preclinical 
studies. By addressing the challenges and focusing on 
personalized approaches, targeted therapies, digital 
health integration, collaboration, and long-term 
assessment, BME can pave the way for transformative 
interventions that enhance the lives of individuals 
affected by MetS.

Advances in biomedical engineering (BME) have 
facilitated the development of powerful tools for 
understanding metabolic syndrome (MetS), providing 
a comprehensive view of the intricate processes that 
contribute to this condition. This has enabled the 
creation of new diagnostic and therapeutic approaches 
intended to enhance the lives of individuals affected 
by MetS. BCAs: body composition analyzers, CGM: 
continuous glucose monitoring, MetS: metabolic 
syndrome.
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Figure 2. Biomedical engineering (BME) approaches addressing metabolic syndrome (MetS).
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Appendix A. Abbreviations
ABPM: ambulatory blood pressure monitoring; 
AI: artificial intelligence; 
BCAs: body composition analyzers; 
BIA: bioelectrical impedance analysis; 
BME: biomedical engineering; 
CBM: constrained-based models; 
CGM: continuous glucose monitoring; 
CT: computed tomography; 
CVD: cardiovascular disease; 

DEXA: dual-energy X-ray absorptiometry; 
GWAS: genome-wide association studies; 
IDF: International Diabetes Federation; 
IR: insulin resistance; 
MetS: metabolic syndrome; 
ML: machine learning; 
MRI: magnetic resonance imaging; 
NCEP ATP III: National Cholesterol Education 
Program Adult Treatment Panel III; 
RAAS: renin-angiotensin-aldosterone system; 
T2DM: type 2 diabetes mellitus.
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