
© The Author(s) 2024. www.gs-publishing.uk

                        © The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License
                 (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and 
reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons license, and indicate if changes were made. 

Computational Biomedicine  Vol 1 Issue 1 2024

DOI:  

ARTICLE

Open Access

Cock-Hen-Chicken Optimizer: A Nature-inspired 
Algorithm for Real-world Engineering Optimization

Zheng-Ming Gao1, 2*, and Juan Zhao3

1School of computer engineering, Jingchu University of Technology, Jingmen, 448000, China
2Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingmen 448000, China
3School of electronics and information engineering, Jingchu University of Technology, Jingmen 448000, China 

*Correspondence to: Zheng-Ming Gao, School of computer engineering, Jingchu University of Technology, 
Jingmen 448000, China; Email: gaozming@jcut.edu.cn

Received: April 1, 2024; Accepted: May 7, 2024; Published online: May 8, 2024

How to cite: Gao, Z.M., Zhao, J. Cock-hen-chicken Optimizer: A Nature-inspired Algorithm for Real-world 
Engineering Optimization. Computational Biomedicine, 2024; 1(1). Doi:

Abstract: Nature-inspired algorithms have been a hot spot and proved to be a successive way to handle 
optimization problems. Due to the No Free Lunch (NFL) theorem, all of the algorithms might fail to solve some 
of the problems and consequently need to be improved. In order to find a better and efficient way to solve the 
real-world engineering problems, an algorithm called the Cock-Hen-Chicken (CHC) optimizer was proposed 
with the inspiration of hunting behaviors of the cocks, hens, and chickens. Simulation experiments on either 
unimodal, multimodal, IEEE Congress on Evolutionary Computation 2017 (CEC17), or CEC2011 competitive 
problems were carried out and finally, it was applied to solve five real-world engineering problems. Most of 
the simulation results except for the CEC17 confirmed the better performance, superiority, and capability of 
the proposed CHC optimizer comparing with other well-known optimization algorithms such as the ant lion 
optimizer (ALO), the equilibrium optimizer (EO), the grey wolf optimizer (GWO), the mayfly optimization 
algorithm (MOA), the particle swarm optimization (PSO), the sine-cosine algorithm (SCA), and the whale 
optimization algorithm (WOA). Results of real-world engineering problems were also promising. The proposed 
CHC optimizer reported in this paper would be a better choice for future applications and the code is shared 
with https://github.com/gaozming/CHCoptimizer for possible future efforts. 
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1. Introduction

Along with the development of modern 
science and technology, we human beings 
have been living a happy life with intelligent 

mobile devices, automated cars, and other automated 
equipment since the time we went into the information 
era. However, we are facing a more and more 
complicated world meanwhile. Several hundreds of 
years ago, the problems raised at that time could be 
solved with pencils. Yet some of the problems had been 
related to probabilities, and integrations several dozens 
of years ago. By now, the satellite has been deployed 
all over the world, and electronic communications have 
changed the world into a small country. We can talk to 
each other with real-time sound and images, just like 
we are communicating face-to-face. The modern life 
was deduced by our real and effective understanding 
of the world. But if one of the problems would be 
raised in mathematics nowadays, more details would 
be involved, the numbers of parameters, degree of 
integration or difference might all be included, and 
consequently, the modern problems would be quite 
difficult to solve. And the answer might be no longer 
possible to find with analytical mathematics. Meta-
heuristic algorithms have been a popular choice 
for such kinds of optimizing problems, including 
special clustering[1], robot path planning[2], damage 
assessment[3], even the modal identification of proton 
exchange membrane fuel cells[4], scheduling of demand 
response-enabled micro grids[5], distributed generation 
planning[6], and CFD Analysis and Optimum Design[7], 
charger placement problem[8], load forecasting[9], and 
multiple objective optimization[10, 11].

However, due to the No-free Lunch (NFL) Theorem [12], 
there still does not exist an algorithm that could solve all 
of the problems with efficiency. Therefore, we are still on 
the way to find better-performing novel algorithms, even 
their improvements. 

The main contributions of this paper would be:
(1) Literal classifications of the nature-inspired 

algorithms proposed by now have been made based on 
the involvements of individuals and the ways to change 
their behaviors.

(2) A CHC optimizer with swarms of best candidates 
and multiple updating disciplinary was proposed.

(3) Detailed simulation experiments have been 
carried out and the superiority of the proposed CHC 
optimizer was confirmed.

The rest of this paper would be arranged as follows: 
In section 2, a brief literature review would be given, 
and the CHC optimizer would be proposed in section 
3. Simulation experiments on benchmark functions, 
together with CEC17 competitive problems, and real-
world engineering problems would be carried out 
in sections 4 and 5. Discussion would be made and 
conclusions would be drawn in section 6.

2. Related Work
Traditionally, nature-inspired algorithms could be 
classified into four types according to the source of 
their inspiration[13]: 1) evolutionary algorithms, such 
as the genetic algorithm (GA)[14], the evolutionary 
algorithm (EA)[15]; 2) human-based algorithms, such as 
the harmony search (HS) algorithm[16], and the group 
search optimizer (GSO)[17]; 3) physics-based algorithm, 
including the gravitational search algorithm (GSA)[18], 
the black hole algorithm (BHA)[19], Ray optimization 
(RO)[20]; and 4) swarm-based algorithms, including 
the ant colony optimization (ACO) algorithm[21], 
particle swarm optimization (PSO) algorithm[22], the 
grey wolf optimization (GWO) algorithm[23], Aquila 
optimizer (AO)[24, 25], the gaining-sharing knowledge 
(GSK) optimizer, and so on. Considering almost all 
of the inspiration sources being existence in literature, 
this kind of classification has been popular for several 
years. In addition, efforts have also been made that 
the algorithms proposed by now could be divided into 
nine classes such as physics based, social based, music 
based, swarm based, chemistry based, biology based, 
sports based, math based, and the hybrid optimization 
algorithms[26, 27], more inspirations sources were 
included.

With a detailed study on the involvement of 
individuals in swarms, or ways to update their 
positions, we hereby proposed other two types of 
classification of the nature-inspired algorithms.

2.1 Classification with Involvements of Individuals
With a glance at the development of the nature-inspired 
algorithms, we would find that all of the individuals 
would be involved in updating their positions at the 
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beginning. They were treated in a same way and simple 
equations were introduced. For example, all of the 
information of ants would be equally involved and 
balanced to change their positions at the next iteration 
in the ACO swarms[28]: 

	 τij(t+1) = (1-ρ)τij(t)+Δτij(t) (1)

Where τ ij(t) and τ ij(t+1) represent the amount of 
pheromone on edge (i, j) for t and t+1 time. ρ is the 
pheromone evaporation and Δτij(t) is the total amount of 
pheromone deposited on edge (i, j).

Also, for individuals in the GA swarms, all of the 
individuals would have the chance to mutate and play 
a role in updating their positions at the next iteration. 
We can call this type of algorithms the all-involvement 
algorithms. For this kind of algorithms, the individuals 
played the same role either he/she was the best or worst 
candidate. Consequently, the worse candidates would 
slow down the convergence and fail to get the global 
best position sometimes.

For the PSO algorithm, it was a little different 
because the historical best trajectories xp(t) along with 
the global best candidates xb(t) would be introduced to 
update individuals’ positions at the next iteration:

 xi(t+1) = xi(t)+vi(t+1) (2) 

 vi(t+1) = vi(t)+c1[xp(t)-xi]+c2[xb(t)-xi] (3)

Where vi(t+1) and vi(t) represent the velocity of 
individuals in the t+1 and t iterations respectively for 
i-th individual, and c1, c2 are two fixed numbers.

Same conditions might occur for individuals in 
swarms of African buffalo algorithm (ABA)[29]:

      xi(t+1) = xi(t)+lp1 [bgmaxk-xi(t)]-lp2[bpmaxk-xi(t)]    (4)

Where bgmaxk and bpmaxk represent the best historical 
and global effective positions of the herd at the current 
iteration, lp1 and lp2 denote the learning rate, which 
were controlled with randomness and energy along 
with iterations.

The best candidate was soon paid attention to and 
the best-involvement algorithms were proposed, 
including the bat algorithm[30], Archerfish hunting 
optimizer (AHO)[31],  and so on.  For the best-
involvement algorithm, only the positions of the best 
candidates would be involved to update the positions. 
The best candidate played more important role during 
iterations and consequently faster convergence were 

achieved. However, the best candidates might fall 
into the local optima and lead to lower diversification 
capability accordingly. But the overall performance 
outperforms the all-involvement algorithms. This 
kind of best-involvement algorithms would also 
include other special examples, such as the GWO 
algorithm[23]:

 Dα = |C1·Xα(t)-X(t)| (5)

 Dβ = |C2·Xβ(t)-X(t)| (6)

 Dδ = |C3·Xδ(t)-X(t)| (7)

 X1 = Xα(t)-A1·Dα (8)

 X2 = Xβ(t)-A2·Dβ (9)

 X3 = Xδ(t)-A3·Dδ (10)

  (11)

Where t indicates the current iteration. X is the 
position vector of the grey wolf, Xα, Xβ, Xδ are the 
position vectors of the alpha, beta, and delta wolf, 
which would be the top three wolves whose fitness 
values were the top three best at each iteration. The 
parameters A and C are combinations of the controlling 
parameter and random numbers.

The top best three grey wolves would all be involved 
in updating the positions of individuals in the next 
iteration. Top best candidates also performed in 
updating the positions of individuals in swarms of the 
equilibrium optimizer (EO)[32]:

  (12)

Where Ci(t+1) and C i represent the position of 
individuals at the t+1 and t iteration, Ceqs is a randomly 
selected candidate from the equilibrium optimization 
pool, F, G, and λ are controlling parameters.

More top candidates involved would reduce the 
capability of being trapped in local optima and 
diversification capability would be achieved. In 
addition, the top best candidates would play more 
important role during iterations, and therefore, faster 
convergence were also achieved.

In summary, the nature-inspired algorithms could be 
classified into two types based on the involvements of 
individuals to update their positons at the next iteration, 
clearly seen in Table 1.
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Table 1. Classification of Nature-inspired Algorithm Based on the Involvements of Individuals

Major types Characteristics Examples
all-involvement algorithm all individuals are involved ES[33], ACO, GA, HS, GSO

best-involvement algorithms

best trajectory and global best candidate PSO, ABA

global best candidate BA, AHO, WOA[13], Hippopotamus optimization 
algorithm(HO)[34], Puma optimizer (PO)[35]

top best candidates GWO, EO

2.2 Classification with Updating Ways of Individuals’ 
Positions
Review on the structure of the nature-inspired 
algorithms, we can see that the modern algorithms 
would perform better in most cases along with the 
complication of equations or parameters involved in 
the algorithms.

At the literal beginning, all of the individuals would 
update their positions with a same equation, see the 
PSO, ACO, BA, ant-lion optimizer (ALO)[36], and 
so on. All of the individuals were updated with the 
single equations, which led to less diversification and 
decreased the capability to find the global best optima. 
To improve the capability of the algorithms, a multiple 
updating discipline was soon proposed[37, 38], and better 
performance was confirmed, therefore, most of the 
nature-inspired algorithms proposed in the recent years 
would embrace the multiple updating discipline and the 
individuals would update their positions with several 
ways, such as the sine cosine algorithm (SCA)[39], 
individuals in the SCA swarms would chose the sine or 
cosine function to update their positions randomly:

  

  (13)
Where, r1, r2 and r3 are random numbers in Gauss 

distribution. p  is a random number in uniform 
distribution with a declination from 2 to 0 linearly. 

Individuals  in  swarms of  the  Harr is  Hawk 
optimization (HHO) algorithm[40] would have four 
ways to select to update their positions, two ways for 
individuals in swarms of the arithmetic optimization 
algorithm (AOA)[41], and four ways for individuals in 
swarms of the Aquila optimizer (AO), war strategy 
optimization (WSO) algorithm[42] and so on. The 
multiple updating discipline introduce multiple 
ways for individuals to update their positions, and 
consequently result in diversification and avoid 
being trapped in local optima. Generally speaking, 
more ways to update the positions would lead to 
more diversification capability, and more methods to 
approach the global optima. This kind of classification 
was simple and efficient, as shown in Table 2.

Table 2. Classification of Nature-inspired Algorithm Based on the Updating Ways of Individuals’ Positions

Major types Examples
Single updating discipline PSO, ACO, BA, ALO

Multiple updating discipline SCA, HHO, AOA, AO

3. Cocks Hens Chicken Optimizer
House breeding was very popular for Chinese peasants. 
During the old days, The Chinese peasants had always 
bred one or two bulls to plough, one pig for the leftover 
and also the preparation of pork for the Spring Festival, 
a swarm of cocks, hens to obtain the eggs and chickens. 
Talking about the swarm of cocks and hens, we know 
that if the hens were fertilized, they would produce 
eggs which could be incubated. Some hens would stay 
at the prepared lair for 21 days or so in spring and the 
chickens would be given birth to. After several days of 

breeding at home, the peasants would open the door 
and let go all of the cocks, hens, and chickens outside 
for food and call them back at sun sank. The cocks, 
hens, chickens would go outside near the village and 
search for food. 

During this period of time searching for food, the 
cocks would be eager to find a place full of food and 
coo the hens to come. While the mother hens would 
be aggressive to secure the chickens and lead them to 
find food and breed the chickens. Although as a species 
of the Phasianidae category, the Gallus are not clever, 
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but the whole searching procedure would be full of 
interesting behavior including love and education, 
the cocks would breed the hens sometimes, and they 
all would breed the chickens, the mother hens would 
always keep their eyes on the chickens and coo them 
to follow, they were aggressive when human, snakes or 
other possible threats are nearby.

Generally, the cocks, hens, and the chickens would 
find food with their own will and the embedded 
inheritable characters. The number of the cocks, hens, 
and the chickens would be more and their hunting 
behaviors were different.

3.1 Cocks Behavior of Searching and Exploitation
After four to five months, the male chickens would 
grow up and they would be eager for reproduction of 
swarms. Therefore, during the searching procedure for 
food, they are in a rush finding the places full of food. 
When they found the place, they would coo the hens to 
come and seek for the chance for fertilization. When a 
place with food is found, they might breed themselves 
at first, dig out the food nearby with their beaks and 
paws. If there is no food at the current place, they 
may dig nearby or move to another place, as shown in 
Figure 1.

Figure 1. Sketches of finding food for cocks.

When the cocks find some food at the current place, 
he would want to find more around the current place. 

In mathematics, this behavior could be described as a 
random walk from the current position:

 xi(t+1) = xi(t)+dance·r1 (14)

Where xi(t+1) and xi(t) represent the position of the 
i-th cock at the iteration t+1 and the current iteration, 
dance is a constant parameter which would be set 0.8 in 
this paper. r1 is a random vector in uniform distribution. 
With equation (14), the cocks would perform detailed 
exploration around the current position and find more 
food with randomness.

There would not be only one cock in swarms. Yet 
the cocks have the sense of dominions, if one finds the 
place with food, the others would wander away to find 
another place. Furthermore, if the cock at the current 
place did not find food, it would move to another 
place with random willing. This procedure could be 
described as random walk with Levy flight. The Levy 
flights would result in some long-distance research 
around several smaller one, and cause the individuals 
to run away from the current position, this could be 
formulated in mathematics:

 xi(t+1) = xb(t)·LF(D) (15)

Where xb(t) is the best position at the current 
iteration, and LF(D) is a D dimensional random vector 
following:

  (16)

Where μ and ν are global mean value and the 
standard derivation in Gauss distribution with μ = 0 and 

 

π

 (17)

Where Γ represents the standard gamma function in 
mathematics and β is a constant value 1.5.

3.2 Hens Behavior of Searching and Exploitation
Although there is not necessary for peasants to breed 
cocks and hens together, we did observe that the hens 
would approach the cocks if they are nearby. 

If the cocks are nearby, the hens would follow the 
cocks to find food. However, there is no morality 
concept for hens, and consequently, some of the hens 
would continue to follow a same cock, some of them 
may lead themselves or the chickens to follow another 
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one, as shown in Figure 2.

Figure 2. Sketches of finding food for hens

The cocks would continue to coo more hens to 
follow them and obtain more chance to get fertilization. 
Therefore, if the food is sufficient, the hens would 
be cooed to gather around the best cock. That is to 
say, individuals would continue to find food around 
the current position and step to the best position. 
This behavior could be described with the following 
equation:

 xi(t+1) = xi(t)+a·r2[xb(t)-xi(t)] (18)

 a = a0  (19)

Where a0 = 2, and maxIter represents the maximum 
allowed iteration times. r2 is another random number 
with an interval of 0 and 1.

Also, the pleasant wanted to breed more hens being 
eager for eggs and chickens. When searching for food, 
the mother hens would lead the chickens to find food 
and avoid meeting each other. In addition, if the place 
is not full of food for all, some of the hens might walk 
away and select another random cock to follow:

 xi(t+1) = xc(t)+a·r3[xc(t)-xi(t)] (20)

Where xc(t) represents a random selected candidate 
of the cocks.

3 . 3  C h i c k e n s  B e h a v i o r  o f  S e a rc h i n g  a n d 
Exploitation
Chickens are very young and they are full of courage 

to try any chance to find food. We have experienced 
that one young chicken with several days of birth 
tried to swallow a whole centipede with a length of 
6 centimeters or so, the chicken raised its head and 
swallowed hard, leaving the rest of the centipede 
crawling extensively, it was really astonishing. Figure 
3 shows that the chickens might follow their mother 
hens, the cocks, or their own experience.

 

Figure 3. Sketches of finding food for chickens

Considering the observation of the chickens’ 
behavior, there might be four choices for the chickens 
to find food. At most times, chickens were cooed to 
follow their mother hens and run to the mother hens 
with random wills:

 xi(t+1) = xh(t)+a·r4[xh(t)-xi(t)] (21)

Note that some of the chickens could not identify 
their mother and the hens sometimes could not identify 
which one is not their children either. Therefore, xh(t) 
would be a random selected candidate of the hens.

Meanwhile, sometimes chickens would wander 
away with their own willing, and result in a random 
initialization of searching with a small proportional 
number p1:

 xi(t+1) = r5(ub-lb)+lb (22)

Where [lb, ub] is the definitional domain of the 
given problem, r5 is another random number in Gauss 
distribution.
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Being young and unwise, the chickens would also 
risk themselves to follow the best cock, which would 
be the best candidate as formulated with equation (5). 
In addition, their small memory could afford some 
experience, so they would walk away from the worst 
position or threating target, as described as follows:

 xi(t+1) = xi(t)+a·r6[xw(t)-xi(t)] (23)

Where xw(t) represents the worst position at the 
current iteration.

3.4 Pseudo Code and Complexity of the Algorithm
Based on the searching behavior of cocks, hens, and 
chickens, we hereby proposed a new metaheuristic 
algorithm and called the cock-hen-chicken optimizer 
with abbreviation CHC optimizer. Supposing there 
was a swarm of Gallus with N individuals, including m 
cocks, n hens, and N-m-n chickens, they are searching 
for a best place with lots of food. After the initialization 
all around the definitional domain, their positions 
would be evaluated and an ascending or descending 
order would be achieved, the top m individuals 

would be selected as the cocks, and the m+1 to m+n 
individuals would be selected as the hens, and the rest 
of them are all treated as chickens. They would perform 
random search according to their inherited nature and 
then reach to new positions, until the best place was 
reached. With a little different to the chicken swarm 
optimization (CSO) algorithm[43], the swarms would 
embrace more top candidates to update their positions 
during iterations. Due to the guidance of multiple best 
candidates involved in updating the positions, and 
the multiple updating disciplinary, premature of the 
convergence might be reduced and better performance 
might be expected. 

With more top candidates being involved in updating 
their positions and eight updating disciplines, the 
proposed CHC optimizer would be expected to perform 
better in convergence and avoid being trapped in local 
optima.

The flowchart of CHC optimizer was shown in 
Figure 4, and the pseudo code of this algorithms is 
shown in Algorithm 1.

ALGORITHM 1 PSEUDO CODE OF THE CHC OPTIMIZER

Stage pseudo code

Parameters

given problems fobj and its dimensionality D, domain [lb, ub]
swarm’s population N, m cocks, n hens
parameter p1 = 0.9
criterion maxIter

Initialization

initialize the positions with equation (22)
calculate the fitness values
the top m best candidates are assigned as cocks
the top candidates ranked m~m+n are assigned as hens
the rest candidates are chicken

Exploration and exploitation

While criterion not met
for each cock
    if best one
        update positions with equation (14)
    else
        update positions with equation (15)
memory saving
for each hen
    if r1 < 0.5
        update positions with equation (18)
    else
        update positions with equation (20)
memory saving
for each chicken
    if r2 < 0.5
        if r3 < p1
          update positions with equation (21)
        else
            update positions with equation (22)
    else
if r4 < 0.5
             update positions with equation (18)
            else
           update positions with equation (23)
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Continuation Table: 
Stage pseudo code

Exploration and exploitation

memory saving
update swarm
the top m best candidates are assigned as cocks
the top candidates ranked m~m+n are assigned as hens
the rest candidates are chicken

Output Position and fitness of the best cock 

We can find that although the individuals in swarms 
were divided into cocks, hens, and chickens, the 
updating equations remain simple with multiple 
updating principle[38]. The computer complexity 

would be relevant to the number of maximum allowed 
iterations and the number of individuals. A simple 
form of the complexity might be formulated as: 
O(maxIter×N).

Figure 4. Flowchart of CHC optimizer

In this proposed algorithm, individuals including 
the cocks, hens, and chicken would have eight ways 
to update their positions in each iteration, and the best 
candidate, top and global best historical trajectories 
would all be involved in the updating. The proposed 
CHC optimizer absorbs all of the best characteristics of 
modern optimization algorithms and would be expected 
to perform quite well in optimization.

4. Results and Discussions
4.1 Experiment and Parameters Setup
Simulation experiments were usually carried out to 
verify the capabilities of the algorithms, especially the 
new proposed algorithms. In this section, we would 

carry out simulations with unimodal, multimodal 
benchmark functions, composite test functions, together 
with some real-world engineering problems. 

Unimodal benchmark functions are easy to optimized 
causing the only global optima in the whole domain, 
while multimodal benchmark functions usually 
have many local optima with one global optima, so 
individuals would be usually been trapped in local 
optima, they would be more difficult to optimize. To 
confirm the capabilities of the proposed CHC optimizer, 
five unimodal and six multimodal benchmark functions 
would be selected as representatives, as shown in Table 
3, Table 4. 
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Table 3. Unimodal Benchmark Functions

No. Name Function dim domain

F1 Ackley 1 10 [-100, 100]

F2 Exponential 10 [-3, 3]

F3 Powell Sum 10 [-1, 1]

F4 Sargan 10 [-100, 100]

F5 Sphere 10 [-100, 100]

Table 4. Multimodal Benchmark Functions

No. Name Function dim domain

F6 Alpine 1 10 [-10, 10]

F7 Cosine Mixture 10 [-1, 1]

F8 Griewank 10 [-10, 10]

F9 Inverted Cosine-
Wave 10 [-5.12, 5.12]

F10 Rastrigin 10 [-5.12, 5.12]

F11 Salomon 10 [-100, 100]

All of the simulation experiments were carried out 
with a HPE ProLiant DL380 Gen10 server, equipped 
with two Intel Xeon Bronze 3106 CPU and 32GB 
RAM, the source code was written with Matlab 2021b 
and shared with address: https://github.com/gaozming/
CHCoptimizer. 

For each swarms involved in the experiments, the 
population size would be setup with 50, and in order 
to reduce the influence of randomness involved in the 
algorithms, the overall results would be the averaged 
results with 100 independent Monte Carlo simulation 
experiment results.

In order to verify the capability of the proposed 
CHC optimizer, other algorithms in literature would 
be introduced to make comparisons. In this section, we 
would carry on the simulation experiments and compare 
with other famous optimization algorithms such as the 
ant-lion optimizer (ALO)[36], equilibrium optimization 
(EO) algorithm[32], grey wolf optimization (GWO) 
algorithm[23], mayfly optimization algorithm(MOA)[44], 

particle swarm optimization(PSO) algorithm[22], sine-
cosine algorithm(SCA)[39], and the whale optimization 
algorithm(WOA)[13]. All of the parameters involved in 
this paper would be listed in Table 5.

Table 5. Parameters Setup

Algorithms Parameters setup
ALO -
EO a1 = 2; a2 = 1; GP = 0.5

GWO a0 = 2

MOA
a1 = 1; a2 = 1.5; a3 = 1.5; β = 2; da = 5; fl = 1; 

dd = 0.8; fld = 0.99; nc = 20; μ = 0.01; 
gdamp = 0.8; g = 0.8

PSO c1 = 1.5; c2 = 1.5
SCA a0 = 2
WOA a0 = 2
CHC m = 10; n = 5

4.2 Empirical Study on the Parameters
Traditionally, the peasants would breed some cocks, 
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more hens, and many chickens during spring. They 
would want to breed more hens and less cocks when 
the chickens grow up. But when we formulate the 
searching and exploitation procedure for food, the 
numbers of cocks and hens would be need to be setup 
at first. The best choice is not known, so we would 
carry on some empirical research. 

In this section we would carry on an empirical study 
on the influence of numbers of cocks and hens during 
optimization.  50 individuals would be setup at the 
beginning, and the numbers of cocks and hens would be 
changed from 1 to 20. Results of benchmark functions 
would be optimized with changing numbers of the 
proposed CHC optimizer and a three-dimensional 

graph would be drawn to show the influence of 
numbers of cocks and hens on the optimum under 
a given maximum number of iterations 100. Again, 
Monte Carlo method[45] would be chosen to reduce the 
influence of randomness involved in the algorithm. All 
of the results would be averaged over 100 independent 
runs, as shown in Figure 5-8. For simplicity, two 
representative of unimodal and multimodal benchmark 
functions were selected to demonstrate the results. The 
best groups of numbers for cocks and hens would result 
in lowest fitness values and fastest convergence. Near 
half of them would be evaluated as cocks or hens, the 
final averaged results would show a balance of their 
numbers.

We can see from Figure 5 to 8 that there were 
no similar rules for the number of cocks, Sphere 
function would want 8 cocks for better results, 18 for 
PowellSum function. But there is not a best number 

of cocks for multimodal benchmark functions. On the 
contrary, there is a strong hint that the number of hens 
should be smaller, which is a little weird and away 
from the peasants’ will. Empirical results recommend 

Figure 5. Empirical research on numbers of cocks and hens 
(PowellSum)

Figure 7. Empirical research on numbers of cocks and hens 
(Griewank)

Figure 6. Empirical research on numbers of cocks and hens 
(Sphere)

Figure 8. Empirical research on numbers of cocks and hens 
(Salomon)
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the number of cocks and hens might be 10 and 5 
respectively.

Another parameter involved in CHC optimizer is 
the probability value p1 for chickens to reinitialize 
themselves. Considering the inspiration and a same 
operation with the SMA[46], a same value with p1 = 1-z 
= 0.97 was given without further empirical research.

4.3 Qualitative Analysis
To get a first glance at capabilities of the proposed 

CHC algorithm, we would carry on the qualitative 
exper iments ,  the  whole  searching procedure 
would be shown and we can find its capability in 
optimizing. Qualitative analysis was usually carried 
out to show the searching history, trajectories, and 
changes of convergence values along with iterations. 
Representatives of benchmark functions would be 
chosen to show the fluctuation of capabilities of the 
proposed algorithm, results could be seen in Figure 9.
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Figure 9. Qualitative results of the proposed CHC optimizer (dim = 10)
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We can see that when optimizing the benchmark 
functions, the proposed CHC optimizer would quickly 
find the best global optima, either they are unimodal 
or multimodal. Most of the individuals would 
approaching the global optima, while some of them 
remain searching in the whole domain. The trajectory 
of the first dimensional would change dramatically, 
and the averaged fitness values remain fluctuate while 
decreasing rapidly. Convergence curves show that the 
overall capabilities were quite promising.

4.4 .  Intens i f icat ion  Analys is  on  Unimodal 
Benchmark Functions
All of the unimodal benchmark functions have only 
one local and also global optima around all of the 
definitional domains. A better algorithm would lead the 

individuals in swarms to approach the global optima 
more quickly in a whole. In order to evaluate the 
capability of the proposed CHC optimizer, optimization 
experiments on unimodal benchmark functions 
would be carried out to confirm the intensification of 
individuals approaching the global optima. This kind 
of experiments were usually called intensification 
analysis. Avoiding the influence of randomness, the 
algorithms together with the comparisons would 
be evaluated with 100 independent runs, statistical 
analysis would be carried out over the 100 results, 
and the best, worst, medians, means and the standard 
derivation calculated upon the 100 results would be 
introduced to balance the capability of the algorithms, 
as shown in Table 6.

Table 6. Intensification Results for Unimodal Benchmark Functions (dim = 10)

Fcn Items CHC ALO EO GWO MOA PSO SCA WOA

F1

best -4.44089E-16 0 0 0 0 0 0 0
worst 3.10862E-15 4.493038381 5.63993E-14 0.587499278 1.972709423 0.587288391 0.09935742 1.48392E-11

median 0 0 0 0 0 0 0 0
mean 1.28786E-16 0.320937809 3.6815E-15 0.002937497 0.149649509 0.057408594 0.001562399 1.09517E-13
std 7.32343E-16 0.847491335 9.76028E-15 0.041542472 0.385225768 0.150277459 0.00882281 1.07945E-12

F2

best 0 0 0 0 0 0 0 0
worst 0 2.42006E-08 1.11022E-16 2.22045E-16 2.70787E-10 1.25833E-08 9.77745E-06 1.11022E-16

median 0 0 0 0 0 0 0 0
mean 0 6.49398E-10 5.55112E-19 1.72085E-17 1.51399E-12 1.90038E-10 8.12503E-08 2.77556E-18
std 0 2.57494E-09 7.85046E-18 4.46558E-17 1.92141E-11 1.07264E-09 7.0983E-07 1.73768E-17

F3

best 0 0 0 0 0 0 0 0
worst 1.3644E-188 0.002882117 7.0561E-41 2.18235E-37 6.73138E-18 6.41762E-09 1.51012E-08 5.52118E-33

median 0 0 0 0 0 0 0 0
mean 8.8203E-191 0.000153972 4.79006E-43 1.47413E-39 4.07949E-20 7.06394E-11 1.13902E-10 4.25081E-35
std 0 0.000480291 5.02111E-42 1.57042E-38 4.78651E-19 4.95921E-10 1.10848E-09 4.16179E-34

F4

best 0 0 0 0 0 0 0 0
worst 1.8306E-139 0.006403136 3.44724E-23 4.03977E-19 0.007121995 9.49522E-06 0.949028633 8.0982E-08

median 0 0 0 0 0 0 0 0
mean 2.287E-141 0.0001162 5.41733E-25 6.94682E-21 3.69026E-05 1.66648E-07 0.006584187 7.57315E-10
std 1.7639E-140 0.00055635 3.32007E-24 3.89627E-20 0.000503562 8.9812E-07 0.067438429 6.65019E-09

F5

best 0 0 0 0 0 0 0 0
worst 8.9056E-146 1.55407E-05 2.40337E-27 7.65955E-23 2.10377E-07 4.33227E-08 0.011284106 2.2145E-31

median 0 0 0 0 0 0 0 0
mean 4.4781E-148 4.21791E-07 2.08527E-29 1.92435E-24 2.96301E-09 5.13357E-10 0.000108135 2.39664E-33
std 6.297E-147 1.61737E-06 1.74949E-28 9.53203E-24 2.11306E-08 3.28124E-09 0.000838642 1.80794E-32

We can see from Table 6 that the proposed CHC 
optimizer would work well with all of the five 
representatives of the unimodal benchmark functions. 

Although at most times the best and median value 
would be the same, the worst, mean and standard 
derivation would always be the best among all of 
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the involved eight algorithms in this simulation 
experiments.

4.5 Diversification Analysis on Multimodal 
Benchmark Functions
Different from the unimodal benchmark functions, the 
multimodal benchmark functions would have multiple 
local optima with one global optimum among the 
definitional domain. Therefore, individuals in swarms 
might be trapped in local optima, and consequently, 
result in less capability in finding the global optimum. 
A better algorithm would give individuals the 

capability to escape the local optima of multimodal 
benchmark functions, the diversification capability 
has been most important and challenging for most of 
the algorithms, because most of the problems we need 
to solve are multimodal. Similar to the intensification 
analysis, diversification analysis would be carried on 
the multimodal benchmark functions, and it was also 
evaluated over 100 independent runs. Results of the 
diversification analysis were also averaged and shown 
in Table 7.

Table 7. Diversification Results for Multimodal Benchmark Functions (dim = 10)

Fcn Items CHC ALO EO GWO MOA PSO SCA WOA

F6

best 0 0 0 0 0 0 0 0
worst 1.11022E-16 0.714315866 2.16469E-07 0.000574877 6.21169E-07 0.006157561 0.650974501 0.958078169

median 0 0 0 0 0 0 0 0
mean 3.88578E-18 0.034750612 2.04766E-09 3.44209E-05 1.17461E-08 4.61031E-05 0.005670214 0.043951787
std 2.04549E-17 0.119259201 1.94584E-08 0.00010312 7.21047E-08 0.000440615 0.053252062 0.190531017

F7

best 0 0 0 0 0 0 0 0
worst 0 0.738921259 0 2.22045E-16 0.295627953 2.15529E-05 1.59274E-05 2.22045E-16

median 0 0 0 0 0 0 0 0
mean 0 0.047290961 0 7.77156E-18 0.012562025 1.1654E-07 1.8162E-07 2.22045E-18
std 0 0.135592276 0 4.09097E-17 0.046328598 1.52433E-06 1.36923E-06 2.21486E-17

F8

best -9 -8.291559873 -9 -9 -8.702942871 -8.65534616 -8.996296536 -9
worst 0 0 0 0 0 0 0 0

median 0 0 0 0 0 0 0 0
mean -1.349999083 -1.004630823 -1.336309729 -1.28456375 -1.206849347 -1.221748654 -1.126480052 -1.232913809
std 3.221704964 2.436852208 3.189319233 3.074180805 2.887110107 2.919185029 2.736785953 2.998008179

F9

best 0 0 0 0 0 0 0 0
worst 0 5.999456608 3.04577428 2.648210165 5.692145476 3.570910883 4.879958119 4.613283718

median 0 0 0 0 0 0 0 0
mean 0 0.593335511 0.20521879 0.254117746 0.593659569 0.330546931 0.077488714 0.157076811
std 0 1.464468087 0.627736661 0.648621102 1.471589979 0.81439138 0.48537549 0.774552388

F10

best 0 0 0 0 0 0 0 0
worst 0 61.68712991 0.994959883 8.249523747 19.48960963 18.09716113 32.21390213 65.95298852

median 0 0 0 0 0 0 0 0
mean 0 3.2634579 0.009949595 0.262892049 1.221346959 1.308472743 0.553854911 0.65006349
std 0 8.847669599 0.099245642 1.086147854 3.408020822 3.397275623 3.34217031 5.634497437

F11

best 0 0 0 0 0 0 0 0
worst 0.099916083 0.799873346 0.099873347 0.199873348 1.230460125 0.199890576 0.199986666 0.299873346

median 0 0 0 0 0 0 0 0
mean 0.004993896 0.046481002 0.014981002 0.015481002 0.076072716 0.023508325 0.016491524 0.021482268
std 0.021822511 0.123507126 0.035751408 0.037596305 0.205148676 0.059284101 0.041042787 0.060008946

Same conclusion might be drawn with Table 7. 
The proposed CHC optimizer only fail to optimize 

Griewank function, while all of the other compared 
algorithms did not get much better either. The mean 
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and standard derivation values of CHC optimizer 
would be much better than other compared algorithm, 
which demonstrated that the proposed CHC algorithm 
would have better diversification capability when 
handling multimodal benchmark functions.

4.6 Convergence Capability Analysis
Convergence analysis would give a better and 
convincing review on the capability of the proposed 
algorithms. The best fitness values changed to 
be smaller and smaller along with the iterations, 

comparison might be made with fastest, or steadiest 
convergence and the least values. In order to show the 
convergence capabilities of the algorithms, the best 
fitness values would be obtained during iterations, and 
all of them would be averaged over 100 independent 
runs to reduce the influence of randomness. Values 
of the best fitness along with the iterations would be 
drawn and would be shown as curves,  as shown in 
Figure 10-20, note that the dimensionality was setup 
with 10 for equal balancing.

Figure 10. Convergence Analysis for Ackley 1 Function

Figure 11. Convergence Analysis for Exponential Function
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Figure 12. Convergence Analysis for Powell Sum Function

Figure 13. Convergence Analysis for Sargan Function

Figure 14. Convergence Analysis for Sphere Function
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We can see with Figure 10-14 that the proposed 
CHC optimizer would result in faster convergence, 
lower fitness values for unimodal benchmark functions, 
and the curves are also very steady. There would be 

very apparent difference in capability between the 
proposed CHC optimizer and the second best EO 
algorithm, and the rest six algorithms would be far 
away from satisfaction. 

Figure 15. Convergence Analysis for Alpine 1 Function

Figure 16. Convergence Analysis for Cosine Mixture Function
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Figure 17. Convergence Analysis for Griewank Function

Figure 18. Convergence Analysis for Inverted Cosine-Wave Function
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Figure 19. Convergence Analysis for Rastrigin Function

Figure 20. Convergence Analysis for Salomon Function
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From Figure 15 to 20, we can draw the similar 
conclusions, the proposed CHC optimizer would also 
result in faster convergence rate, lower fitness values, 
and steadier convergence curves for multimodal 
benchmark functions. Meanwhile, we can also find that 
the second best algorithm performed in optimization 
was also the EO algorithm.

On the  whole ,  the  convergence  capabi l i ty 
experiments on benchmark functions, either unimodal 
or multimodal, confirmed that the proposed CHC 
optimizer would perform quite better than all of 
the compared algorithms involved in this paper. 
Considering the symmetry[47] of these benchmark 
functions, the proposed CHC optimizer would 
quickly find the zero optima with several rounds of 
iterations, which outperform all of the other algorithms 

significantly.

4.7 Scalability Analysis
Along with the development of modern science and 
technology, we are facing more and more complex 
problems, especially the dimensionality of the 
problems with big data is increasing dramatically. 
Decreasing the dimensionality would be an efficient 
way, however, most of the dimensionality remain 
very large in numbers after decreasing operations. 
Therefore, scalability capability is very important for 
an algorithm. We would continue to carry on scalability 
capability simulation experiments on the unimodal and 
multimodal benchmark functions to confirm whether 
the proposed CHC optimizer also have the best 
scalability or not. Results were shown in Figure 21-31.

Figure 21. Scalability Experiment Results for Ackley 1 Function

Figure 22. Scalability Experiment Results for Exponential Function
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Figure 23. Scalability Experiment Results for Powell Sum Function

Figure 24. Scalability Experiment Results for Sargan Function

Figure 25. Scalability Experiment Results for Sphere Function
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Figure 26. Scalability Experiment Results for Alpine 1 Function

Figure 27. Scalability Experiment Results for Cosine Mixture Function

Figure 28. Scalability Experiment Results for Griewank Function



 Vol 1 Issue 1 2024

Figure 29. Scalability Experiment Results for Inverted Cosine-wave Function

Figure 30. Scalability Experiment Results for Rastrigin Function

Figure 31. Scalability Experiment Results for Salomon Function
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From Figure 21 to 25, we can see that the proposed 
CHC optimizer has the better scalability capability 
for unimodal benchmark functions. However, the 
scalability would decrease its superiority along with the 
increasing in dimensionality. 

While when optimizing the multimodal benchmark 
functions, see Figure 26 to 31, the proposed CHC 
optimizer would perform better at most times, 
especially on the Inverted Cosine-wave, Rastrigin, and 
Salomon function, the best fitness values increased 
along with the increase in dimensionality. Note that 
for Cosine Mixture function, the proposed CHC 
optimizer would always find the global optima, thus it 
could not be shown with semiology graph. And some 
of fitness values obtained when optimizing Griewank 
function turned to be smaller than 0,which meant that 
the individuals are approaching the zero base point, 
and consequently, the negative values cannot be shown 
with semiology graph.

We can see that the proposed CHC optimizer perform 
better at most times, especially when it was applied in 
optimizing multimodal benchmark functions.

4.8 Wilcoxon Rank Sum Test
Only qualitative and quantitative analysis carried out 
before could not support a definite conclusion that the 
proposed CHC optimizer would be the best choice 
in optimization. The final results including graphs 
and tables might be following a same distribution 
statistically. Therefore, statistical analysis should 
be carried out to confirm the capability for sure. In 
this experiment, Wilcoxon rank sum test would be 
carried out. Wilcoxon rank sum test would test the null 
hypothesis that two data are samples from continues 
distributions with equal medians, against the alternative 
that they are not. The confidence level p = 0.05 is 
adopted and used to balance the confidence, results 
were shown in Table 8.

Table 8. Wilcoxon rank sum test results (dim = 10)

Fun ALO-CHC EO-CHC GWO-CHC MOA-CHC PSO-CHC SCA-CHC WOA-CHC WOA-CHC
F1 0.000145036 0.000133341 0.000145036 0.000145036 0.000145036 0.000145036 0.000520732 5.93632E-05
F2 6.38644E-05 0.167488756 9.66052E-05 6.38644E-05 6.38644E-05 6.38644E-05 0.033589681 0.368120251
F3 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.427355314
F4 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672
F5 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672 0.000182672
F6 9.28237E-37 9.28237E-37 9.28237E-37 9.28237E-37 9.28237E-37 9.28237E-37 9.28237E-37 9.28237E-37
F7 5.64002E-39 9.23054E-35 5.6185E-39 5.64002E-39 5.64002E-39 5.64002E-39 1.89073E-15 5.64002E-39
F8 2.98488E-37 4.88935E-33 2.5196E-34 1.08585E-36 1.80687E-35 4.3009E-37 1.47886E-33 2.98488E-37
F9 5.64002E-39 5.64002E-39 5.64002E-39 5.64002E-39 5.64002E-39 5.64002E-39 5.17585E-35 5.64002E-39

F10 5.64002E-39 5.6396E-39 5.64002E-39 5.64002E-39 5.64002E-39 5.64002E-39 4.04774E-36 5.64002E-39
F11 2.56214E-34 0.817392297 1.84781E-12 2.562E-34 2.82325E-32 1.21239E-33 1.28813E-06 2.56214E-34

We can see from Table 8 that when carried on 
the Wilcoxon rank sum test with the proposed 
CHC optimizer and other famous algorithm in 
literature, every p values would be very small and 
far away from 0.05, therefore, we can confirm that 
statistically, there is an absolute difference and the 
proposed CHC optimizer would perform quite better 
than other compared algorithms involved in this 
paper.

4.9 Experiments on CEC17 Problems
In this section, we would carry on more simulation 

experiments to verify whether the proposed CHC 
algorithm could perform well in optimizing some 
hard problems reported in competitive evolutionary 
computation competitions. CEC17 would be involved 
and 30 functions including 2 unimodal, 7 simple 
multimodal, 10 hybrid, and 10 composition functions, 
see reference for details[48]. The best, worst, median, 
mean, and standard derivation would be reported 
according to the same limitation with 51 runs. Results 
were shown in Table 9 to Table 10.
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Table 9. The results of CHC algorithm for D = 10 with 100000 FES

Fun Best Worst Median Mean Std.
F1 6.667869E+02 1.274083E+04 1.068429E+04 9.266645E+03 3.829495E+03
F3 3.000000E+02 3.000000E+02 3.000000E+02 3.000000E+02 2.464672E-13
F4 4.000045E+02 4.545826E+02 4.008051E+02 4.023625E+02 7.543207E+00
F5 5.059698E+02 5.229091E+02 5.149248E+02 5.148009E+02 4.034218E+00
F6 6.000001E+02 6.002687E+02 6.000039E+02 6.000305E+02 6.038354E-02
F7 7.161178E+02 7.431276E+02 7.224435E+02 7.233280E+02 5.009584E+00
F8 8.039798E+02 8.218891E+02 8.109446E+02 8.113544E+02 3.914231E+00
F9 9.000000E+02 9.004544E+02 9.000000E+02 9.000128E+02 6.546874E-02
F10 1.145317E+03 1.966089E+03 1.485815E+03 1.482085E+03 1.495160E+02
F11 1.100995E+03 1.126950E+03 1.109950E+03 1.110057E+03 6.149058E+00
F12 4.157805E+03 2.000944E+05 5.151565E+04 5.073454E+04 2.504932E+04
F13 1.319419E+03 1.575359E+04 2.308495E+03 2.999680E+03 2.689039E+03
F14 1.404994E+03 1.446290E+03 1.428136E+03 1.427050E+03 1.068323E+01
F15 1.501309E+03 1.517415E+03 1.506051E+03 1.506283E+03 3.339916E+00
F16 1.600463E+03 1.638843E+03 1.611950E+03 1.616533E+03 1.065818E+01
F17 1.701328E+03 1.742377E+03 1.722818E+03 1.720080E+03 1.374882E+01
F18 1.860405E+03 3.461456E+04 9.111965E+03 1.187288E+04 8.492284E+03
F19 1.900205E+03 1.985923E+03 1.903184E+03 1.908941E+03 1.974955E+01
F20 2.000000E+03 2.025288E+03 2.018539E+03 2.013487E+03 9.418143E+00
F21 2.200000E+03 2.203083E+03 2.200000E+03 2.200526E+03 1.082929E+00
F22 2.228946E+03 2.304294E+03 2.302074E+03 2.300808E+03 1.030099E+01
F23 2.613200E+03 2.634860E+03 2.624715E+03 2.622748E+03 5.080640E+00
F24 2.500000E+03 2.774523E+03 2.751840E+03 2.670044E+03 1.215599E+02
F25 2.897743E+03 2.969455E+03 2.943826E+03 2.927652E+03 2.507156E+01
F26 2.600098E+03 3.008774E+03 2.987113E+03 2.958063E+03 7.120268E+01
F27 3.089006E+03 3.093541E+03 3.089940E+03 3.090158E+03 8.239444E-01
F28 3.100000E+03 3.410791E+03 3.165991E+03 3.168106E+03 6.596226E+01
F29 3.132463E+03 3.194244E+03 3.137048E+03 3.138696E+03 8.558521E+00

Table 10. The results of CHC algorithm for D = 30 with 300000 FES
Fun Best Worst Median Mean Std.
F1 1.002743E+02 2.094177E+04 2.066590E+03 3.225119E+03 4.726046E+03
F3 3.014690E+02 1.308165E+04 3.056705E+02 1.780976E+03 2.765438E+03
F4 4.041702E+02 6.405106E+02 4.833369E+02 4.801856E+02 2.890381E+01
F5 5.456900E+02 7.062140E+02 5.900548E+02 5.941734E+02 3.352476E+01
F6 6.039508E+02 6.118782E+02 6.073941E+02 6.074558E+02 1.990752E+00
F7 8.341137E+02 9.941719E+02 8.907780E+02 8.961811E+02 3.506911E+01
F8 8.431949E+02 9.949737E+02 9.067794E+02 9.025595E+02 3.000447E+01
F9 1.017562E+03 2.933120E+03 1.294776E+03 1.395438E+03 3.412193E+02
F10 2.804519E+03 4.881721E+03 3.805101E+03 3.844801E+03 4.343582E+02
F11 1.126358E+03 1.299866E+03 1.192322E+03 1.190478E+03 4.064258E+01
F12 2.364703E+04 3.252586E+06 1.604198E+05 3.527546E+05 6.195819E+05
F13 2.879793E+03 6.340141E+04 8.343478E+03 2.183493E+04 2.390305E+04
F14 1.634616E+03 2.108098E+05 6.551532E+03 1.904756E+04 3.636945E+04
F15 1.934578E+03 4.287043E+04 6.053813E+03 8.083546E+03 9.082769E+03
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Continuation Table: 
Fun Best Worst Median Mean Std.
F16 1.974949E+03 3.311952E+03 2.385478E+03 2.437195E+03 4.507006E+02
F17 1.915094E+03 2.521561E+03 2.140978E+03 2.150865E+03 1.531797E+02
F18 1.713541E+04 3.592743E+05 2.017845E+05 1.673665E+05 9.392012E+04
F19 2.104698E+03 5.653034E+04 5.727495E+03 1.030476E+04 1.238350E+04
F20 2.092499E+03 2.734337E+03 2.487346E+03 2.492678E+03 1.673817E+02
F21 2.200004E+03 2.473787E+03 2.402920E+03 2.398025E+03 4.967762E+01
F22 2.300000E+03 7.192550E+03 5.719411E+03 5.317860E+03 1.389934E+03
F23 2.728303E+03 2.807272E+03 2.770932E+03 2.772128E+03 1.830875E+01
F24 2.947777E+03 3.085029E+03 3.002499E+03 3.006595E+03 2.422285E+01
F25 2.883435E+03 2.940893E+03 2.886950E+03 2.887060E+03 8.164145E+00
F26 4.476400E+03 6.098907E+03 5.085284E+03 5.144216E+03 3.956519E+02
F27 3.195614E+03 3.229082E+03 3.200008E+03 3.205124E+03 8.242072E+00
F28 3.218014E+03 6.397741E+03 3.300007E+03 3.606791E+03 9.137416E+02
F29 3.437914E+03 4.246275E+03 3.906158E+03 3.906508E+03 2.346769E+02

Compared with the reported accepted algorithms 
proposed in CEC17, jSO[49], DES[50], and LSADE_
SPACMA[51] were all performed well in finding the 
best results. However, the proposed CHC optimizer 
failed at most times. It can only find several best 
results for composite equations such as F23, F25-F29. 
Considering the large memory required by this 
experiments, we do not carry on further simulations, 
yet the failure could be confirmed for CEC competitive 
equations at the original version.

5. Experiments on Real-world Engineering 
Problems
Although we have carried out simulation experiments 
on unimodal or multimodal benchmark functions, 
including some composite functions from CEC 
competitions, the real capability of the proposed 
algorithms would remain in suspicion due to the ideal 
disposal of the benchmark functions. A common way 
to get the capability of the proposed algorithm more 
convincing is to carry on further experiments on some 
real-world engineering problems. The mathematics 

discipline of the real-world engineering problems 
is known yet without a given solution under some 
constraints. 

In this section, we would carry on further simulation 
experiments on some classical real-world engineering 
problems. The real-world engineering problems could 
be described as the constraint problem with several 
equal constraints and non-equal constraints:

Minimize: f(x), x = {x1, x2, …, xn}
Subject to: gi(x) ≤ 0, i = 1, 2, …, m

hi(x) = 0, i = 1, 2, …, n
Where xi∈[LBi, UBi] is the definitional domain of 

the given problem, note that LBi, UBi might be not the 
same values for every i-th parameter. gi(x) is called the 
non-equal constraints, the number of them m would 
be confirmed for every problem. hi(x) represents the 
equal constraints. Note that for all of the real-world 
engineering problems, m and n could be zero and thus 
the constraints might be all non-equal or equal.

The simplest way to solve the constraint problems is 
to formulate a new fitness function with penalty factors 
Pei and Pni:

Where ε is a small parameter.
In order to find the best and convincing results, 

we would also carry on 10000 times of runs with 
50 population size of the CHC swarms, and the best 
choice would be the final results for every real-world 

engineering problems.

5.1 Gear Train Design Problem
Gear train design problem is a very popular design 
optimization problem for verification of the algorithms. 
The goal of the problem as shown in Figure 32[52] is to 
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find a minimal gear ratio under the given constraint.

Figure 32. Sketch of the gear train design problem

Consider X = {x1, x2, x3, x4} = {nA, nB, nC, nD}

Minimize 

Subject to 12 ≤ x1, x2, x3, x4 ≤ 60

This design problem is a discrete problem that all 
of the parameter should be fixed to integer numbers. 
Results would also be compared with other related 
algorithms, as shown in Table 11.

Table 11. Comparison results of the gear train design problem

Algorithm
Optimal values for variables

Optimal cost
nA nB nC nD

PSOSCALF[52] 49 19 16 43 2.7009e-12
CS[53] 43 16 19 49 2.7009e-12

ALO[36] 49 19 16 43 2.7009e-12
MFO[54] 43 19 16 49 2.7009e-12
MVO[55] 43 16 19 49 2.7009e-12
ABC[56] 19 16 44 49 2.78e-11
ALM[57] 33 15 13 41 2.1469e-8

CHC 43 19 16 49 2.70086e-12

We can see that the proposed CHC optimizer would 
find the least gear train ratio among the compared 
famous algorithm in literature.

5.2 Pressure Vessel Design Problem
The pressure vessel design is another well-known 

design optimization problem. As shown in Figure 
33[52], the pressure vessel would store liquids under 
bigger pressure, the best parameters should result in a 
lowest cost of manufacturing and keeping safe of the 
pressure liquids.

Figure 33. Sketch of the pressure vessel design problem

Consider: x = {x1, x2, x3, x4} = {Ts, Th, R, L}
Minimize: f(x) = 0.6224x1x3x4+1.7781x2x3

2+3.1661x1
2x4+19.84x1

2x3
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Subject to:
g1(x) = -x1+0.0193x3 ≤ 0
g2(x) = -x3+0.00954x3 ≤ 0

g3(x) = -πx3
2x4- πx3

2+1296000 ≤ 0

g4(x) = x4-240 ≤ 0
Limit to: 0 ≤ x1, x2 ≤ 99, and 10 ≤ x3, x4 ≤ 200.

Table 12. Comparison results of the pressure vessel design problem

Algorithms
Optimum values for variables

Optimum cost
x1 x2 x3 x4

CPSO[58] 0.8125 0.4375 42.091266 176.74365 6061.0777
WOA[13] 0.8125 0.4375 42.0982 176.6389 6059.7410
MFO[59] 0.8125 0.4375 42.0984 176.6366 6059.7143
AAO[60] 0.8125 0.4375 42.0985 176.6366 6059.7140
GWO[23] 0.8125 0.4345 42.0892 176.7587 6051.5639
SMA[46] 0.8260 0.4083 42.8155 167.9488 5970.0507
WSA[61] 0.78654289 0.39348835 40.75268075 194.78059812 5929.6218823
SMA[46] 0.7931 0.3932 40.6711 1962178 5994.1857
BSA[62] 0.7788 0.3946 40.3542 199.5188 5886.8000
CHC 0.774549094 0.38320386 40.31961872 200 5870.123977

We can see from Table 12 that the proposed CHC 
optimizer would outperform all of the other compared 
algorithms.

5.3 Tension/Compression Spring Design 
Problem
Tension compression spring design optimization is 

another famous application of modern meta-heuristic 
algorithm. The goal of this problem is to find the 
best manufacturing structure that satisfied the given 
constraints with the minimum weight cost. This 
problem is described with Figure 34 and formulated as 
follows.

Figure 34. Sketch of the tension/compression design problem

Consider x = {x1, x2, x3} = {d, D, N}

Minimize: f(x) = (x3+2) x1
2x2

Subject to: g1(x) = 1-  ≤ 0

g2(x) =  ≤ 0

g3(x) =  ≤ 0

g4(x) =  ≤ 0

Optimized with the proposed CHC optimizer, the 
minimum weight 0.012665265 was obtained, which 
might be the best results among the reported values in 
literature, as shown in Table 13.
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Table 13. Comparison results of the tension/compression spring design problem

Algorithms
Optimum values for variables

Optimum cost
x1 x2 x3

GSA[18] 0.050276 0.323680 13.525410 0.0127022
SMA[46] 0.05 0.3174 14.0276 0.0127
WOA[13] 0.0512 0.3452 12.004 0.0127
AAO[60] 0.0517 0.3581 11.2015 0.0127
BSA[62] 0.0528 0.3835 9.8751 0.0127

CPSO[58] 0.051728 0.357644 11.244543 0.0126747
MFO[59] 0.051004457 0.36410932 10.868421862 0.0126669

PSOCSCALF[52] 0.05188366 0.36141614 11.018738 0.012665923
CHC 0.051654981 0.355898385 11.33717563 0.012665265

5.4. Three-bar Truss Design Problem
Three bar truss design optimization is a famous 
structure optimization problem in civil engineering. 

The basic goal of this problem is to find the minimum 
truss weight with constraints of tension, deformation, 
and buckling, as shown in Figure 35.

L L

L
x1

x2

x1

Figure 35. Sketch of the three-bar truss design problem

Consider x = {x1, x2 } = {A1, A2}
Minimize: f(x) = ( x1+x2)×L
Subject to:

g1(x) =  ≤ 0

g2(x) =  ≤ 0

g3(x) =  ≤ 0

And the limitation of x1, x2 is [0,1]. Table 14 showed 
the latest results reported in literature. Although the 
efficient numbers were not larger than the results 
obtained with the GOA, but the overall final fitness 
value is the minimum best. 

Table 14. Comparison results of the three-bar truss design problem

Algorithm
Optimal values for variables

f(x)
A1 A2

RAS[63] 0.795 0.395 264.3
MFO[54] 0.788244771 0.40946690578 263.9859797
CS[64] 0.78867 0.40902 263.9716

AOA[65] 0.79369 0.39426 263.9154
BA[66] 0.78863 0.40838 263.8962

GOA[67] 0.788897555578973 0.407619570115153 263.895881496069
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Continuation Table:

Algorithm
Optimal values for variables

f(x)
A1 A2

MVO[55] 0.78860276 0.40845307 263.8958499
ALO[36] 0.788662816 0.40828313383 263.8958434
CHC 0.78864941 0.408234008 263.8914911

5.5. Welded Beam Design Problem
The welded beam design problem is another real-
world engineering optimization problem in literature. 
The goal of this problem is to find the minimum 
manufacturing cost under the safety constraints, as 
shown in Figure 36.

Consider: x = {x1, x2, x3, x4 } = {h, l, t, b}
Minimize: f(x) = 1.10471x1

2x2+0.04811x3x4(14.0+x2)

Subject to:
g1(x) = τ(x)-τmax ≤ 0
g2(x) = σ(x)-σmax ≤ 0
g3(x) = δ(x)-δmax ≤ 0
g4(x) = x1-x4 ≤ 0
g5(x) = P-Pc(x) ≤ 0
g6(x) = 0.125-x1 ≤ 0
g7(x) = 1.104781x1

2+0.04811x3x4(14.0+x2)-5.0 ≤ 0

b

b

t

h

P

l

L

Figure 36. Sketch of the welded beam design problem

And:
0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2

τ(x) = 
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This optimization is most important because of the 
wide application in real-world engineering structures. 
The best fitness values changed dramatically as 

reported in literature. In this paper, a less fitness value 
is reported, as shown in Table 15.

Table 15. Comparison results of the welded beam design problem

Algorithm
Optimal values for variables

Optimal cost
h l t b

FSA[68] 0.2444 6.1258 8.2939 0.2444 2.3811
HS[69] 0.2442 6.2231 8.2915 0.2443 2.3807

GSA[18] 0.182129 3.856979 10.00000 0.202376 1.87995
POS[70] 0.2251501 3.2405498 8.6290848 0.2256212 1.7963199
SCA[39] 0.2046987 3.6555450 9.2759949 0.2047442 1.7824134
SIO[71] 0.3314 2.0174 9.0459 0.2088 1.7621
GA[72] 0.208800 3.420500 8.997500 0.210000 1.748310
ESs[73] 0.199742 3.61206 9.0375 0.206082 1.7373
RO[20] 0.203687 3.528467 9.004233 0.207241 1.735344

CDE[74] 0.203137 3.542998 9.033498 0.206179 1.733462
HHO[40] 0.204039 3.531061 9.027463 0.206147 1.73199057
CPSO[58] 0.202369 3.544214 9.0487210 0.205723 1.73148

FA[75] 0.2015 3.5620 9.0414 0.2057 1.7312
GOA[67] 0.2073334 3.4495889 9.0018462 0.2073224 1.7306820
WOA[13] 0.2054 3.4843 9.0374 0.2063 1.7305
ALO[36] 0.2038936 3.5104491 9.0366268 0.2057296 1.7273787
MVO[55] 0.205463 3.473193 9.044502 0.205695 1.72645
GWO[76] 0.2056760 3.4783770 9.0368100 0.2057780 1.7262400
SSA[77] 0.2057 3.4714 9.0366 0.2057 1.72491
BSA[62] 0.2057 3.4706 9.0366 0.2057 1.7249
WSA[61] 0.20572963 3.47048995 9.03572964 0.20572964 1.72485254
MFO[54] 0.2057 3.4703 9.0364 0.2057 1.72452
SMA[46] 0.2054 3.2589 9.0384 0.2058 1.69604

CHC 0.205730638 3.253104311 9.036624135 0.205729646 1.69524757

6. Discussion and Conclusion
Inspired by hunting behaviors of cocks, hens, and 
chickens, the Cock-Hen-Chicken (CHC) optimizer was 
proposed in this paper, the proposed CHC optimizer 
would embrace the multiple updating principle and best 
candidates would be involved. Simulation experiments 
were carried out in details, either on unimodal or 
multimodal, CEC competitive equations or real-
world engineering problems. Most of the simulation 
experiments confirmed the better performance, 
superiority, and capabilities. 

The proposed cock-hen-chicken optimizer introduced 
multiple top candidates including the cocks and hens to 
update the positions. Eight updating disciplines were 
introduced to update their positions. Both of these two 

methods would increase the capability in convergent 
rate and diversification. Consequently, individuals 
in swarms would be more capable to find the global 
optima, and avoid being trapped in local optima, and 
fast convergence.

Efforts on the proposed CHC optimizer confirmed 
that when individuals in swarms would have multiple 
updating ways, the algorithm would perform well 
in optimization. Novel algorithms were paid great 
attention to in literature, experts in computer science 
were eager to find new ways with fast convergence, 
low residual errors, and a capability avoiding being 
trapped in local optima. For engineers, improvements 
were also important in application, meanwhile, they 
may also construct a new algorithm with various types 
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of algorithms and absorb the outstanding instincts.
However,  al though the overall  results  were 

promising, more efforts should be done with the 
CHC optimizer to find the reason why it failed with 
CEC17 competitive equations at most times. efforts 
should be made to clarify whether it was special or 
not. And furthermore, more applications on real-world 
optimization problems should be carried out in detail, 
for example, image segmentation, feature extraction, 
economic dispatch, discrete optimization problems, and 
so on.
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