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Abstract: Complete spontaneous tumor regression (without treatment) is well documented to occur in 
animals and humans as epidemiological analysis show, whereby the malignancy is permanently 
eliminated. We have developed a novel computational systems biology model for this unique 
phenomenon to furnish insight into the possibility of therapeutically replicating such regression 
processes on tumors clinically, without toxic side effects. We have formulated oncological informatics 
approach using cell-kinetics coupled differential equations while protecting normal tissue. We 
investigated three main tumor-lysis components: (i) DNA blockade factors, (ii) Interleukin-2 (IL-2), 
and (iii) Cytotoxic T-cells (CD8+ T). We studied the temporal variations of these factors, utilizing 
preclinical experimental investigations on malignant tumors, using mammalian melanoma microarray 
and histiocytoma immunochemical assessment. We found that permanent tumor regression can occur 
by: 1) Negative-Bias shift in population trajectory of tumor cells, eradicating them under first-order 
asymptotic kinetics, and 2) Temporal alteration in the three antitumor components (DNA replication-
blockade, Antitumor T-lymphocyte, IL-2), which are respectively characterized by the following 
patterns: (a) Unimodal Inverted-U function, (b) Bimodal M-function, (c) Stationary-step function. 
These provide a time-wise orchestrated tri-phasic cytotoxic profile. We have also elucidated gene-
expression levels corresponding to the above three components: (i) DNA-damage G2/M checkpoint 
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regulation [genes: CDC2-CHEK], (ii) Chemokine signaling: IL-2/15 [genes: IL2RG-IKT3], (iii) T-
lymphocyte signaling (genes: TRGV5-CD28). All three components quantitatively followed the same 
activation profiles predicted by our computational model (Smirnov-Kolmogorov statistical test 
satisfied, α = 5%). We have shown that the genes CASP7-GZMB are signatures of Negative-bias 
dynamics, enabling eradication of the residual tumor. Using the negative-biasing principle, we have 
furnished the dose-time profile of equivalent therapeutic agents (DNA-alkylator, IL-2, T-cell input) so 
that melanoma tumor may therapeutically undergo permanent extinction by replicating the 
spontaneous tumor regression dynamics. 

Keywords: negative bias; systems biology; spontaneous cancer regression; chemotherapy; 
bioinformatics; immunotherapy; melanoma; histiocytoma; microarray 

 

1. Introduction  

There are several significant drawbacks to cancer treatment by antitumor agents, as chemotherapy 
and immunotherapy. The first issue is an apparent “clinical cure” whereby the tumor cells are 
eliminated to a major extent, so that the tumor is clinically undetectable, even though microscopic 
amounts of cancer cells remain, which flare up much later after the initial therapy, thus producing 
tumor recurrence. The second is presence of cancer stem cells which, even though initially forming an 
miniscule cellular population, goes on multiplying as they have much less sensitivity to therapeutic 
agents, thus producing resistant tumor relapse [1]. Another issue is the inability of administering 
therapeutic agents intensively, as the latter produces appreciable normal tissue damage, producing 
intolerable side-effects that prevent the administration of further therapy. These disadvantages need to 
be well addressed, even though it is also known that occasionally there is permanent elimination of a 
tumor by exogenous therapeutic agents. Some examples of such exogenous regression of tumors are 
multimodal chemoimmunotherapy using drugs (like alkylators as dacarbazine or temozolomide), 
antitumor lymphocyte therapy, along with interleukin [2,3]. 

Though the clinician usually encounters a malignant tumor in its progression phase, the reverse 
process of permanent spontaneous regression of malignant tumors is a well-documented phenomenon, 
occurring subclinically across human populations at 22–46% rate, as per the Scandinavian and 
Wisconsin Screening Registries which have tracked a population of 0.33 million and 2.95 million 
individuals respectively [4,5]. It is evident in autopsy studies that about half the subjects have 
malignant focus in uterine cervix or prostate, with confirmation of permanent containment, and 
furthermore, malignant neuroblastoma fully regresses from larger-sized tumors [4,6]. As per PubMed, 
there are about 14,000 titles of papers dealing with spontaneous cancer regression, covering virtually 
all types of malignant diseases such as sarcomas, carcinomas, lymphomas, melanomas and so on [7]. 
Though the regression process eliminates malignant cells, it does not damage the normal tissue, i.e. 
normal cells are protected overall. Typically, the duration of a tumor’s regression generally occurs 
across a period of months, generally 1 to 2 months. Such endogenously-initiated regression of 
malignancy also occurs in animals, including worms and molluscs and even took place in dinosaurs 
which are now extinct [8]. In fact, there are numerous species of animals known to completely regress 
malignant lesions, which are usually fatal in man, such as melanoma. We have earlier elucidated the 
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energetics and biothermodynamic basis of spontaneous tumor regression [9,10]. Indeed, the 
investigation of the spontaneous regression process may indicate incisive pointers on inducing the 
permanent regression process on human malignancies. 

Spontaneous cancer regression (both endogenous or exogenous process) depends on various 
factors like the amount of the tumor load, the invasiveness of the disease, the intensity of the treatment, 
and the robustness of the patient's immune response. Mathematical modeling is seen to be a potentially 
vital tool for creating better treatment strategies for cancer patients to address the cancer regression 
process. Over the years, researchers have used various models to address the biological process of 
tumor growth and of anticancer treatment [11–14]. In this study we have considerably modified our 
previously developed model [15], in which tumor cell kinetics, chemotherapy dynamics, dynamics of 
immune system (NK cell, circulating lymphocyte and cytotoxic T-cell), chemotherapy dynamics, and 
immunomodulation/immunotherapy dynamics, are represented by a system of six differential 
equations. Our novel mathematical model is incisively based on experimentally observed biological 
processes, namely the lethal effect on the tumor cell, as induced by the immune cells, namely 
cytotoxic T-cells (CD8+), and natural killer (NK) cells, the delineation of these lethal interactions 
are delineated next.  

It is well established that NK cells target tumor cells and produce cytokines by secreting perforins 
and granzymes as part of immune responses to malignancies [16,17]. These immune cells release 
perforins in the immunological synapse, the perforins are pore-forming cytolytic protein that form 
porous openings in the tumor cell membrane [18]. Once this occurs, the immune cells release granzyme, 
which is a proteolytic enzyme that travels through the pore into the cytoplasm of the tumor cell, 
activating the caspase cascade and thereby inducing programmed cell death or apoptosis in the 
malignant cell [19]. When NK cells and T-cells come into contact with cancer cells, immunological 
synapses are formed with tumor cells to deliver lysosome-mediated cytolytic agents (as cathepsins and 
hydrolases) inside the tumor cells [20]. Moreover, granzymes and perforin are two further examples 
of cytotoxic chemicals that CD8+ T cells can use to kill tumor cells. Additionally, chemokines as 
interferons (which cytotoxic CD8+ T-cells secrete) can activate the tumor cells to produce more MHC 
class I antigens, making the malignant cells to become more attractive targets for cytotoxic CD8+ T-
cells [21]. 

In this paper, we attempt to quantitatively formulate the general methodology of complete tumor 
regression (whether endogenous or exogenous) and discern the unitary principles that enable this 
regression. Thereafter, the validation of the methodology in pre-clinical environment are shown on 
two malignant systems, melanoma and histiocytoma.  To underscore, melanoma cases can undergo 
fully effective spontaneous regression (PubMed has 585 cases studied in detail [22]), and this 
melanoma regression occurs appreciably at 10–35% rate [23]. Analysis of 10,098 melanoma regression 
patients showed that these patients can have incisive clinical correlates [24]. Understanding melanoma 
regression is critically needed, as it is the type of malignancy whose incidence is accelerating 
maximally [25]. An important aspect here is that we have showed that a malignant lesion can undergo 
permanent regression by an optimized synchronization of: 1) antitumor feedback control process, 
based on optimal dynamic feedback according to tumor load, and 2) normal tissue protection, based 
on minimization of tissue toxicity, together with 3) ensuring that cancer stem cells are also eliminated. 
In contrast to this permanent regression approach, we also show that often conventionally dosed 
antitumor chemotherapy-immunotherapy intervention (i.e., without dynamic feedback control procedure) 
fails to eliminate the tumor cells completely, with the result that there is tumor recurrence later.  
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Various differential equation-based quantitative models are available in the literature to replicate 
the dynamics of the biological process of cancer regression, and some of these models will be 
delineated now. For instance, Perry [9] has used the laws of mass action and first-order dynamics to 
characterize the reaction kinetics of tumor cell lysis during exogenous tumor regression brought on by 
therapeutic agents such as chemotherapy medications that cause DNA damage in the malignant lesion. 
As a result, the tumor cell population T declines exponentially [9]. Furthermore, when a lesion 
spontaneously regresses, the tumor cell population reduces exponentially with time [26,27]. However, 
a residual tumor cell population asymptotically exists under the exponentially-decreasing trajectory 
and this population of residual cells is frequently a factor in tumor recurrence and incurability. It is 
well-known that three complementary processes can reduce the tumor cell population:  
(i) Decrease of the proliferation of tumor cells: Here, chemical alkylation or chemomodulation of 

DNA are two methods for reducing cell proliferation that can lead to DNA damage [28,29],  
(ii) Increase of tumor cell lysis: This occurs through the medium of antitumor lymphocytes [18,30,31],  
(iii) Further enhancement of tumor cell lysis: The activation of the antitumor lymphocytes can be 

boosted by cytokines (for example, immunomodulation by interleukin-2) [32].  
The mathematical framework of these three processes have been developed by de Pillis et al. [33], 

Kuznetsov et al. [34] , and Kirschner et al. [35]  based on experimental data, and the predictions of the 
modelling have also been empirically validated [36]. These models effectively describe the 
computational dynamics of antitumor activity by DNA damage and immunological action. However, 
in all these models, the tumor cell population follows first-order biochemical kinetics and exponential 
asymptotic decay of tumor population with some residual malignant cells remaining, and complete 
eradication of all tumor cell fails to occur, and thus future relapse of the cancer lesion happens. In this 
study we aim to improve the aforesaid models using our procedure. The methodology of this paper can 
remove the aforesaid asymptotic cancer cell population, and enable eradication of all malignant cells, 
with permanent elimination of the tumor without any future recurrence. 

It may be underscored that our analysis of the extinction of cancer cells is motivated from the 
well-known process of spontaneous permanent regression of tumors and its system biology evidence, 
whereby we have developed an approach of how one can replicate this tumor regression process in a 
clinical situation. We have provided substantiation of the proposed feedback approach by quantitative 
analysis of signal transduction pathway, gene expression level of G2/M-phase DNA damage pathway, 
IL-2 expression and T-cell receptor signaling. Finally, the translational aspects and validated 
corroboration of our approach is furnished, which enables the formulation of a guided controller-based 
treatment planning system governing the infusion of chemotherapy, interleukin, and antitumor T-cell 
immunotherapy, for complete extinction of the malignant lesion, cancer stem cell elimination and 
normal tissue protection. For a comprehensive understanding, Schema 1 summarizes our problem 
statement and our approach to it. 
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Schema 1. Workflow of the problem statement and our approach to elucidate it. 

2. Materials and methods: 

2.1. Formulating the computational framework of spontaneous tumor regression: 

During exogenous tumor regression induced by therapeutic agents such as chemotherapy drugs 
that induce DNA damage, the reaction kinetics of tumor cell lysis is described by laws of mass action 
and first-order dynamics, hence the tumor cell population M decreases exponentially [9]. Likewise, in 
endogenous or spontaneous regression of tissue lesion or malignancy, the tumor cell population 
exponentially decreases with time [26,27,37]. For instance, in the former experiment [9], the 
proliferative cell activity is estimated by metabolic phosphorylation intensity, namely by ATP 
dynamics. Thus, the trajectory is M = M0𝑒𝑥𝑝(−𝜀𝑡), where ε, the rate parameter, is the intensity of the 
tumor regression effect (Figure 1(a)). Typically, a clinically just-detectable tumor has 107 malignant 
cells, and for regression in a reasonable time (say 1–2 months), this tumor cell population can decrease 
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essentially to near zero (say 0.01 of cell population, or 10-4 of cell population), which can be enabled 
by using a suitable value of the rate parameter, induced by the regression process. 

It may be noted here that there always persists asymptotically a residual tumor cell population 
under the trajectory and this can often be the factor of tumor recurrence. However, one can resolve the 
asymptotic issue and enable the tumor population trajectory to become zero at a definitive time point, 
using the principle of negative biasing by following a path of guided control [38,39]. Here the tumor 
cell trajectory exponentially approaches a negative value M*, indicating that the tumor cell population 
trajectory becomes zero at time tF (Figure 1(b)). This indicates that M = [(M0+𝑀*)𝑒𝑥𝑝(−𝜀𝑡)]– M*, 
so that bias M*= −M0exp(−𝜀𝑡F)/(1 − exp(−𝜀𝑡F)). 

 

Figure 1. Complete tumor elimination process by principle of negative biasing. (a): In 
conventional therapy, the elimination of the tumor cell population M(t) follows an 
exponentially-decreasing trajectory, with tumor cells always persisting asymptotically 
under the curve, thereby leading to tumor relapse after therapy duration has ended. (b): The 
Negative bias shift process enables the residual tumor cell population to become zero at a 
finite time tF. This curve M(t) decreases exponentially by approaching the negative bias 
(M*) value, so that, at time point F, it hits the horizontal x-axis, where tumor cell 
population is zero. Thus, at F the tumor cell population becomes extinct and there is no 
further tumor cell to replicate, i.e., complete and permanent tumor regression occurs, 
eliminating the malignant lesion. 

2.2. Systems analysis of tumor extinction: 

Regarding exogenous regression (therapy-initiated regression) and endogenous regression 
(tissue-initiated regression), we have formulated a multimodal equivalence of the two regression 
processes from a systems biology perspective. Thereby, as Figure 2 elucidates, the three input terms 
to the tumor-host system (boxes on left side), respectively correspond to the entities of DNA damage 
or cell-proliferation blockage, tumor-infiltrating lymphocytes, and cytokine as interleukin. For a 
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malignant tumor to undergo elimination, three complimentary processes for tumor cell reduction may 
need to occur: 
(i) Decreasing the tumor cell proliferation: Proliferation of cells can be reduced by processes that 

enable DNA impairment, as by chemical alkylation or chemomodulation of DNA, 
(ii) Increasing tumor cell lysis, for example, by antitumor lymphocyte formation,  
(iii) Activation of these lymphocytes which can be enhanced by cytokines (for instance, 

immunomodulation by chemokines as interleukin-2). 
Implementation of the aforesaid tumor regression processes can happen in two ways: 
(a) Exogenous process, where the above three factors, DNA chemomodulation, antitumor lymphocyte 

formation and cytokine immunomodulation can be respectively induced by externally injecting 
alkylating chemotherapy drug, tumor infiltrating lymphocyte, and interleukin-2. 

(b) Endogenous process, where the three factors are autogenously generated by the host tissue itself, 
such as, by DNA blockage, cytotoxic lymphocyte infiltration into the tumor, and interleukin-2 
upregulation, respectively. 

 

Figure 2. Multimodal equivalence between 1) Therapy-induced elimination of tumor, i.e., 
Exogenous tumor regression, and 2) Host tissue-induced elimination to tumor, i.e., 
Endogenous tumor regression. Endogenous regression of tumor is due to internally-
generated factors, while Exogenous regression is due to externally-generated factors. Each 
of the three causative entities of Exogenous regression (therapy-initiated regression) and 
Endogenous regression (tissue-initiated regression) have similar factors, as detailed in the 
three boxed entities on the left side. 

It should be mentioned here that the main route of DNA damage in both exogenous and 
endogenous tumor regression is by alkylation. For instance, in exogenous regression (e.g., by drugs), 
the DNA chemotherapy agents such as the most widely used pharmaceuticals as alkylators, function 
by alkylating the guanine moiety of DNA. Likewise, in endogenous regression (e.g., by spontaneous 
cancer regression), T-cell upregulation is a major factor, these cells secrete granzyme factor which 
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activates Trex enzyme that induces DNA single-strand breaks at the 3’-portion [18]. It is known that 
such single-strand breaks at 3’-portion function onwards by alkylating the adjacent guanine moiety of 
DNA [9]. We have worked out the quantitative equivalence between the dynamics of spontaneous 
tumor regression and of therapy-induced tumor regression in Section 1 of the Supplement. 

We now endeavor to develop a quantitative analysis of endogenous or exogenous tumor 
regression. Consider the milieu of the tumor’s interaction, namely the populations of malignant tumor 
cells, natural killer cells, and circulating white blood cells (lymphocytes in the blood), which can be 
denoted respectively by M, K, B (Figure 3). Let C, A and D denote the intensity levels respectively of 
IL-2 (e.g., concentration), of Antitumor lymphocyte (e.g., T-lymphotyte infiltration population), and 
of DNA chemomodulation, namely, DNA interference in cells, e.g., concentration level of DNA-
damaging moieties in tumor tissue (Figure 3), which can be gauged by the level of TNFα or by the 
level of DNA damage’s checkpoint activation, or other procedures.  

 

Figure 3. Computational systems analysis of activation of multimodal entities 
(Interleukin-2, Cytotoxic T-cells and DNA damage) which enables tumor eradication, 
endogenously or exogenously. 

2.3. Formulation of extinction of tumor cells  

We here represent the interaction of the different cellular populations in terms of the flowsheet in 
Figure 4. The details of the derivations of this section are furnished in [15]. Using primed symbols to 
denote temporal rates or time derivatives, we can formulate the temporal dynamical model, specifically 
the rate of change of concentration of IL-2 activation, as given in the equations below. 
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Interleukin formation rate        Interleukin elimination rate             

rate         

Elimination rate of DNA blockage factor Generation rate of DNA blockage factor          

Birth of  

circulating cells 

 

Death of circulating 

cells (senescence)                                 

 

Lysis of circulating cells 

associated with DNA damage factor 

 

Figure 4. Interaction between the malignant lesion and the entities in its environment 
during endogenous or exogenous regression of the lesion (i.e., host-induced or therapy-
induced regression). 

(i) Interleukin: 

                                                             C’  =   vC(t)   ˗   µCC                                          (1) 

 

where vC(t) represents the interleukin-2 formation in the system, and the interleukin degradation or 
elimination being according to the rate principle, i.e., proportional to its concentration, with µC being 
the decay rate. Similarly, we have the formulation of the rate of change of level of DNA interference: 

(ii) DNA damage: 

                                                          D’  =    vM(t)    ˗    γD                                                               (2) 

 

where γ is the corresponding decay rate of the elimination or degradation of the DNA blockage factor. 
Likewise, we can formulate the dynamics of circulating white blood cells B:  

(iii) Circulating leucocyte: 

                                               B’     =      α    –    βB    –     kB(1 – e-D)B                                         (3) 
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where the leucocytes are generated at rate α from marrow, and they age with a death rate β, while the 
last expression (1 – e-D) is the saturation term denoting the fractional kill of these cells by the DNA 
blockage factor. After that, we formulate the natural killer cell dynamics: 

(iv) Natural killer cells:  

                    K’     =      eB    –    fK   –    pKM    –   kK(1 – e-D)K   +   𝑔
ெ

ାெ
K (4) 

 
 

Here, the last expression [K𝑀 / ℎ + 𝑀ே ] is a modified Michaelis-Menten type term, providing a 
saturation effect in cell-cell interactions, and g, h and n are three logistic constants (n ≈ 2 here). 
Furthermore, we consider another saturation effect, the intensity Q of the interaction between tumor 
cells (M) and antitumor lymphocytes (A). Using another three logistic constants d, s, and l, we can 
elucidate Q as: 

(v) Tumor cell–Cytotoxic T cell interaction: 

 𝑄 = 𝑑
൫

ெൗ ൯


௦ା൫
ெൗ ൯

 (5) 

 

The cytotoxic T-cell dynamics can now be delineated as: 

(vi) Cytotoxic T-lymplocyte (CTL) dynamics: CD8+ T-cells: 

A′  =  −𝑚𝐴 + 𝑗
(ொெ)మ

ା(ொெ)మ
𝐴 − 𝑞𝐴𝑀 + (𝑟ଵ𝐾 + 𝑟ଶ𝐵)𝑀 −  𝑢𝐾𝐴ଶ −  𝑘(1 − 𝑒ି)𝐴 +  

  

ା 
 + 𝑣(𝑡) (6) 

 

where 𝑚𝐴 represents T-cell death (senescence), and the last term 𝑣(𝑡) represents Tumor infiltrating 
lymphocyte formation rate. Here the terms are explained by the captions beneath; the right-side’s 
second term [(QM)2/{k+(QM)2}] and second-last term [(pCAC)/(gC + C)], are saturation effects in cell-
cell interactions. Lastly, we formulate the tumor cell dynamics as:   

(vii) Tumor cell dynamics: 

 M ′ =  𝑎𝑀(1 − 𝑏𝑀) − (𝑐𝐾𝑀 + 𝑄𝑀) − 𝑘ெ(1 − 𝑒ି)𝑀           (7) 
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It may be mentioned that the right-side of Eqs (1)–(7) has several cellular parameters (such as a, b…, 
α, β…), and their symbols, numerical values, significance and references, are given in Table S1 of 
the Supplement. 

2.4. Protection of normal host tissue 

Note that DNA damage, whether endogenous or exogenous, induces lysis of the host’s cellular 
populations: antitumor lymphocytes, natural-killer cells, and circulating leucocytes, the lysis rate 
parameters being respectively kM, kA, kK, kB in Eqs (3), (4), (6) and (7). However, tumor cells are more 
sensitive to the DNA damage lysis than other cells (kM > kA, kK, kB [33]). An important aspect here is 
that normal host cells should not be damaged appreciably and should be protected. This is taken care 
of by setting up limits that should not be crossed by the host system during the regression process since 
the host cell populations need to be maintained within a minimum and maximum value (upper and 
lower bounds). Too high a value of an entity can be toxic to the system, and the population of host 
cells that protect against infection (as circulating lymphocytes and natural killer cells) should be above 
a minimum value, whereby the normal tissue will be protected. The importance of the lysis parameters 
and limit thresholds for both endogenous and exogenous regression are described in Supplementary 
(Section 2.2). These values are displayed therein, in Table S2. 

A fundamental prerequisite is that the regression process should take place in such a way that all 
the tumor cells are eradicated, but there should be least damage and cellular toxicity to the host. A 
measure of normal tissue damage due to the aforesaid antitumor entities (chemomodulation or 
immunomodulation) can be described by the standard toxicity cost functional J, wherein toxicity to 
the cell, a second-order mass-action effect [40], depends on second-power of the intensity-level of the 
antitumor entity:  

 J = ½ ( r1 U1
2+  r2 U2

2 + ….) (8) 

where U1 , U2, …. are the levels or effects of different antitumor entities, while r1 , r2 , …. are the 
weighting factors of each of the various entities. For instance, in the case of endogenous tumor 
regression, the effect level of immunomodulation U1 can be taken to be the intensity of tumor-cell lysis 
by cytotoxic T-lymphocyte, i.e., term Q in Eq (7), while the effect level of chemomodulation U2 can be 
gauged by the intensity of tumor-cells lysed by the DNA damage factor, i.e., the last term kM(1 – e–D) in 
Eq (7). We use this least damage principle to probe the conditions of tumor regression that would be 
optimal for the system, producing the minimal damage to normal tissue.  

2.5. Path of complete tumor regression process 

As the tumor undergoes permanent regression as per the formulation in Eq (7), we now endeavor 
to find out the temporally-varying activation level of the five associated factors: interleukin C, DNA 
damage D, circulating leucocytes B, natural-killer cells K, and antitumor lymphocytes A. In other 
words, we need to solve the Eqs (1)–(7) using the boundary conditions that these biological antitumor 
parameters (C, D, B, K and A) do not cross the physiological limits or bounds, see first paragraph of 
this section above and also the Supplement (Section 2 and Table S2).  

Through solution of the Eqs (1)–(7), we find the values of the five antitumor factors and their 
alteration with time, which are necessary for inducing the tumor to follow the temporal trajectory of 
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Figure 1(b), so that there is elimination of full tumor cell population at time tF, of that figure. Solving 
the equations, we have following pattern of activation intensity of the factors that together produce the 
complete tumor regression. The description of the equations are first mentioned below, and then 
information is given on their derivation. These equations are: 

(i) Temporally-varying pattern of the activation level of DNA damage for tumor extinction: 

 D(t)‡ = – 𝑙𝑛ൣௗ1– ൛𝑏ெ𝑔ெଵ
/𝑟ெଵ

Gൟ൧ (9) 

where D(t)‡ indicates the required DNA blockage factor concentration in blood which enables the tumor 
to undergo complete regression by the extinction time tF, [the duration tF, is shown in Figure 1(b). Further, 
in the above equation, bM denotes the combined tumor cell-killing effect of DNA blockage factor and 
cytotoxic T-cell lymphocytes. If bM is negative, the tumor will have regression; if bM is zero, the tumor 
becomes stable in steady state; and if bM is positive, then the tumor is in progression phase. The 
parameters gM1 and gM2 are respectively the biological toxicity effect on normal tissue due to the DNA 
blockage factor and cytotoxic T-cell. The parameters rM1 and rM1 denote the toxicity weighting index 
respectively of DNA blockage factor and cytotoxic T-cell; these toxicity weighing indices are the 
weighing factors mentioned in Eq (8). The term G is the combined normalized toxicity weighting 
factor for both DNA blockage agent and cytotoxic T cells together, namely 

 G = [(gM1
2/rM1) + (gM2

2/rM2)] (10) 

(ii) Temporal pattern of cytotoxic lymphocyte activation for tumor extinction: 

  A(t)‡ = – ൣ𝑠𝑀൫𝑏ெ𝑔ெଶ
/𝑟ெଶ

G൯/൛𝑑– ൫𝑏ெ𝑔ெଶ
/𝑟ெଶ

G൯ൟ൧1/l (11) 

where A(t)‡ signifies the desired cytotoxic T-cell population in the blood which enables the tumor to 
undergo complete regression by time tF. In Eq (1), the terms s, l and d are the tumor cell lysis 
parameters due to action of cytotoxic T cell on the tumor (explained in Table S1 of the Supplement). 
The parameters bM, gM2, rM2, and G have already been explained in the above paragraph. 

(iii) Temporal pattern of interleukin-2 activation for tumor extinction: 

 C(t)‡  = gେ𝑏/ௗ(𝑝𝐴ௗ𝑟ଵ𝐻– 𝑏) (12) 

where C(t)‡ represents the Interleukin-2 concentration in the blood which enables the tumor to undergo 
complete regression by time tF. In the above equation, gC denotes the steepness index of cytotoxic T 
cell recruitment by interleukin IL-2, and bA is the total cytotoxic T cell activation effect induced by 
DNA blockage factor and autocatalytically by cytotoxic T cell. The parameter pC is the maximum value 
of the rate of cytotoxic T cell recruitment by IL-2, and A represents the cytotoxic T-cell population. 
The terms rA1 and rA2 are the toxicity weighing factors denoting the toxicity effect on cytotoxic T cell 
due to both IL-2 and autocatalytically by cytotoxic T-cell respectively. The term H is related to the 
above-mentioned toxicity weighing factors rA1 and rA2, namely 

 H = [(1/rA1) + (1/rA2)] (13) 
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The details of the aforesaid derivations have already been explained in our previous work [15]. 
However, in that work, we had neither formulated nor provided negative bias, and so there were some 
amount of residual malignant cells persisting. In contrast, in this present report, we have furnished our 
novel methodology of negative bias, and we thereby show that all malignant cells become extinct in 
the desired duration. Furthermore, our previous publication [15] was a mathematical derivation paper, 
there was absence of any biological, tissue-based, clinical or molecular biology analysis. In the current 
report, we have satisfactorily given all these biological and clinical findings for enhancement and 
validation of our new approach of tumor eradication under the novel approach of negative biasing. 

 

Figure 5: Flow chart for computational modelling of Endogenous or Exogenous regression 
of malignant lesion (i.e., Spontaneous tumor regression or Treatment-induced tumor 
regression respectively).  

The parameters bM , bA , gM1 , gM2, G and H depend on the value of  the tumor characteristics (M, 
kM ,kA) and on  the toxicity-minimizing indices (rM1,  rM2, rA1 , rA2 ,) [15]; the other parameters in the 
equations (s, l, d, gC, pC) depend on the tumor growth and tumor lysis characteristics, having the values 
as in [33]. The temporal pattern of the circulating leucocyte population B and natural-killer cell 
population K, can be found by respectively solving Eqs (3) and (4), where we use the values of the 
relevant parameters which are also available [33]. The tumor cell population can be obtained as follows. 
We substitute these values of C(t), D(t), and A(t) into Eqs (1), (2) and (6) and thus arrive at the values 
of Circulating leucocyte, NK-cells, and Cytotoxic T-cells. Then we put the latter three values in Eq (7) 
and thus obtain the value of the tumor cell population M(t).  
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The quantitative formulation of our simulation model of endogenous or exogenous tumor 
regression is explained in Figure 5. We have used a Matlab platform to compute the profiles of the 
three entities (DNA damage, cytotoxic T-cell, and Interleukin-2), using tuning parameters values (rT2 
and rL2) described in [15]. [Note that DNA damage events of endogenous regression are estimated in 
terms of equivalent alkylation activity of an alkylator agent (units of dacarbazine equivalents), as per 
Supplementary (section 2.1)]. For the initialization of the model, we have to provide initial intensity 
value of all the different cellular populations, i.e., their values at time point t0 (at the beginning of 
tumor regression). After that, we need to provide all the biological parameters used in Eqs (1)–(7) [33]. 
Thence, we need to calculate the negative bias value (M*) and set the tuning parameters (rT2 and rL2). 
The tuning parameter rT2 is used to calculate the control parameter vA and vD, and the tuning parameter 
rL2 is used to calculate vC  [15].  

Here we have divided the profile of the three entities (DNA damage, T-cell, and IL-2) in 4 loops 
(M - Loop, A- Loop, D - Loop and C - Loop) as elucidated in [15]. M-Loop is again divided into 3 
loops M1- Loop used to calculate value of UA, UD, A*, and D*, M2- loop is for the calculation of UA 
and A*, and M3-loop is for UD and D* (note that here UA and UD indicate the anti-tumor behavior of 
cytotoxic T-cell and DNA damage respectively). Similarly, A-loop is again divided in 3 loops; A1- 
Loop is used to calculate value of UC, vA, and C*, A2- loop is for the calculation of UC and C*, and 
A3-loop is for vA calculation alone (here UC denotes the anti-tumor behavior of IL-2). At last, the D-
loop and C - loop is used to calculate vD and vC dose rates according to Figure 3. In other words, 
initially, the curve of tumor decreases and extinction is formulated by allotting a desired suitable 
extinction time tF (this gives the negative bias M*, Figure 1(b)). Then the modelling is performed, 
whereby the aforesaid methodology and algorithm above will simulate the tumor regression process, 
so that the tumor cell population follows the extinction process of Figure 1(b). The moment the 
simulation gives the tumor cell population as a (small) negative value, the procedure will convert the 
negative value to zero (the tumor cells have become extinct before attaining a negative value). From 
this time point onwards, the simulation procedure will maintain the tumor cell population at 0 
henceforth, and so there will be no tumor relapse. Thus, the simulation process will give (for each time 
step) the levels of DNA damage, cytotoxic T-cell, and Interleukin-2, whereby these three entities 
jointly gradually eradicate the tumor cell population by time tF.  

2.6. Validation of the computational model using experimental biological system 

The mathematical model is verified on immunohistochemical experiments and microarray assay 
of a preclinical model of permanent spontaneous tumor regression in melanoma. Here, numerous 
tumors appear in pigs, they grow rapidly for the first 1½ months, and then spontaneously regress 
completely by 3–4 months in half of the animals, but in the other half, the tumors spread and kill the 
animals [24]. In the study, six pigs who went into the regression mode, were investigated, tumors had 
biopsy under anesthesia at three weekly intervals across three months, at these five different time points 
as follows, t0 = day-of-birth (d) + 8 days after birth (i.e., d + 8), thence t1 = d + 28 days; t2 = d + 49; t3 
= d + 70, and t4 = d + 91 (Schema-2). At each time point 5–6 tumor-masses were biopsied, and 
subjected to microarray investigation using Ingenuity algorithm. 
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Schema-2. Temporal sequence of tumor biopsy analysis across the tumor regression 
process. 

(i) Pre-clinical investigation 

Regarding the aforesaid melanoma regression analysis, we accessed the gene expression profiles 
of E-MEXP-1152 from the ArrayExpress facility (https://www.ebi.ac.uk/arrayexpress/) [41]. The 
microarray assay was based on Transcription profiling of tumor from the melanoblastoma-bearing 
Libechov Minipig (MeLiM) model and the Porcine Genome Arrays platform. This involved 5 different 
tumors of 5 pig siblings, each across 5 time points, from day 8 to day 91 after birth (Submission date: 
September 10, 2008). Also, the time-dependent gene expression profiling of the spontaneously 
regressing melanoma tumor biopsies was performed. Further, from the ArrayExpress platform, we 
analyzed all the raw information CEL-Files (E-MEXP-1152.raw.1.zip) belonging to this experiment 
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-1152/). 

(ii) Normalization and statistical analysis 

We then performed normalization, statistical analysis and the analysis of variance (ANOVA) of 
the microarray information, using R platform and Bioconductor statistical facility 
(http://www.bioconductor.org/) [42]. We did the preprocessing step utilizing the GeneChip Robust 
Multiarray Average (GC-RAM) method to get the gene expression matrix from Affymetrix 
information. For identification of differentially expressed gene in log2 scale, we used the 
Transformation for t-test and one-way ANOVA. Thence, differentially expressed Probe sets were 
selected on the bases of p value and fold change (FC) value [(FC) > 2 and p value < 0.05]. Moreover, 
the significant probe sets after ANOVA were used for biological functional analysis and comparison. 

(iii) Time dependent biological function analysis using pathway study 

 We then identified the temporal profile of the microarray data for the different Biological Classes 
category, utilizing the Ingenuity Pathway Analysis procedure (IPA). We also elucidated the 
expressional changes at each time-point, the functional interpretations, and the biological interaction 
of the genes, which were also demarcated using IPA. This furnished the temporal pattern of gene-
expression levels corresponding to the effector components of Figure 4, such as (i) DNA damage 
(G2/M checkpoint regulation), (ii) Antitumor lymphocyte activation (T-lymphocyte Receptor 
Signaling), Natural Killer cell activation (NK signaling), etc. We also clustered the genes 
corresponding to different canonical pathways utilizing IPA methodology, out of these genes we 
identified the most significant genes with high FC-value. 
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3. Results 

We first obtained the inferences from the computational modelling analysis developed above. 
Then we furnished experimental findings from the preclinical studies, to validate the theoretical 
quantitative formulation. 

3.1. Mathematical modelling and computational simulation for tumor regression model 

We have used the MATLAB platform to numerically solve the Eqs (1)–(7), and find the values 
of these parameters and their alteration with time, while the tumor follows the temporal trajectory of 
Figure 1(b); the complete flow-chart is shown in Figure 5 and the simulation has already been 
described in the “Materials and methods” Section, item 2.5. 

3.2. Tumor system behavior 

Here we deal with an indicative case of melanoma. Melanoma is a neural crest cell tumor and 
shares many similarities with common neural system tumor as glioma. We can take the initial realistic 
situation as starting malignant cell population (T0) of 2 × 107 cells, natural killer cell population of 105, 
cytotoxic T-cell population of 5 × 104, and circulating lymphocytes of 109. These realistic values are 
adapted from an earlier analysis of tumor dynamics [33]. The number of tumor cells corresponds to a 
realistic tumor which has just been radiologically detected, say a metastatic melanoma mass in the 
liver (radiological detection threshold ≈ 1 cc. tumor, having 107 malignant cells [43]). All the other 
constants used in the model are given in [33], with the tumor cell growth rate, a = 0.301 per day, and 
the deceleration rate of logistic tumor growth b = 1.01 × 10-8. Here, we have considered a more 
aggressive melanoma tumor, so the tumor cell growth rates a can be taken to be 50% higher of the 
aforesaid a value (i.e., new value of a is now 0.43). 

To be able to compare endogenous and exogenous regression in a common platform, we need to 
estimate the DNA blockage in both endogenous and exogenous tumor regression using a common unit, 
we have formulated this common unit as an equivalent unit of alkylation blockage activity (i.e., in 
terms of alkylation activity of equivalent amount of chemotherapy dacarbazine which will produce the 
same number of DNA blockage events either in exogenous or endogenous regression of tumor) 
(Section 2.1 of the Supplement).  

(i). Tumor regression under conventional therapy (without Negative Bias): Tumor Relapse 

We now formulate the case of a conventional protocol of chemotherapy and immunotherapy of 
melanoma, utilizing (i) Chemotherapy: Six pulses of chemotherapy, one every 10 days (dacarbazine 5 
mg/kg/day pulse), (ii) Interleukin-2: Six pulses of 500,000 i.u/kg/day, from day-8 to day-11. (iii) 
Cytotoxic T-cells: Total 109 cells during an infusion at day-7 through day-8. We have applied these 
values to the initial Eqs (1)–(7) which are solved to obtain tumor cell population M as time elapses. 
Figure 6 shows that the tumor cell population initially decreases to about 100,000 malignant cells, but 
later manifests as cancer relapse and increases to high values (≈109 malignant cells) that corresponds 
to a large tumor of diameter ≈6 cm., such a tumor will have penetrated the blood vessels, producing 
wide dissemination and lethality. 
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Figure 6. Conventional treatment protocol using chemotherapy and immunotherapy. This 
uses DNA blocking alkylator drug dacarbazine, and immunotherapy (Cytotoxic T-
lymphocyte and Interleukin-2). The protocol fails to eliminate malignant melanoma tumor 
cells, and after treatment duration there is relapse of the malignancy.  

 (ii). Tumor regression by negative bias formulation: Permanent tumor elimination 

Here we have used the different sets of Eqs (9), (11) and (12), which give the levels of the three 
entities (DNA damage, cytotoxic T cells, interleukin-2) that are required to enforce the cell population 
of the melanoma tumor to follow the exponentially declining trajectory to zero cell at a specific desired 
duration (46 days). We now simulated the equations at a time-step of a 0.01 second, and obtain the 
values of the levels of DNA damage, Interleukin-2, and Cytotoxic T-cells, which would enable the 
tumor population to follow the targeted diminishing curve trajectory of Figure 1(b), aimed at tumor 
extinction in 46 days. These levels of the above three entities are then used to obtain the tumor cell 
population (using the other set of Eqs (1)–(7)). Therein, the populations of the circulating leucocytes and 
natural killer cells are also calculated. Note that the actual tumor cell population obtained (Figure 7(a)) 
follows in principle the desired exponentially decreasing trajectory that we planned, whereby all tumor 
cells undergo eradication. Note that none of the system parameters (DNA damage level, circulating 
lymphocytes, NK cell, cytotoxic T-cells) crosses the respective upper and lower physiological bounds 
or thresholds of Table S2 (Supplement), thereby ensuring normal tissue protection. Here, we found the 
negative bias to be M* = 1.8986 × 105 cells. Since the total number of initial tumor cells M0 = 2 × 107 
cells, we observed that the relative value of M* is small, at about 1% of the initial tumor load. 
  



9589 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 9572–9606. 

 

Figure 7. Complete elimination of melanoma tumor under negative bias. (a) Consistent 
decline of tumor cell population with time: Complete elimination of tumor at 46 days by 
following negative biasing behavior of Figure 1(b) scheme. (b) Bimodal temporal profile 
of cytotoxic T-cell required for eliminating Tumor cells. (c) Unimodal profile of level of 
DNA damage required for eliminating Tumor cells (DNA damage is estimated in terms of 
equivalent amount of alkylator substance dacarbazine that produces similar amount of 
DNA damage, see text). (d) Concentration profile of Interleukin-2 required for tumor 
elimination (the curve displays a stationary level). (e) Temporal profile of circulating 
lymphocyte level required for tumor elimination (the curve levels off at a saturating value). 
(f) Temporal profile of natural killer cell level required for tumor elimination (the curve 
levels off at a saturating value). (g) Interleukin-2 input rate that would enable tumor 
elimination. (h) DNA blockade input rate that would enable tumor elimination (estimated 
in equivalent amount of rate of input of alkylator substance dacarbazine). (i) Tumor-
infiltrating lymphocyte input rate that would enable tumor elimination. 
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(iii). Behaviour of cancer stem cells, natural killer cells and circulating lymphocytes 

From Figure 7(e),(f), we see that the population of circulating lymphocytes and natural killer cells 
in the body attain the values respectively of 6 × 1010 cells and 3 × 105 cells, which are very much below 
their corresponding upper bounds, and are only about 10 and 0.001% of the respective upper bounds 
in Table S2 (Supplement). Furthermore, it is known that cancer stem cells become much resistant to 
anti-tumor drugs as they have drug efflux channels which ejects out the drugs from the tumor cells. 
For instance, the sensitivity of the cancer stem cells to a drug can become 8–23% of the sensitivity of 
general cancer cells to that drug [44], this drug sensitivity of tumor cell is the parameter D in Eq (2). 
Hence, to formulate cancer stem cells in the model, we decrease the drug sensitivity D to 1% of the 
value that we have used in the earlier paragraph, this very low value of D has been put as a 
precautionary measure. We performed the simulation of the earlier paragraph again, and we observed 
that there is also complete tumor eradication (Figure 8), though a somewhat longer therapy duration is 
needed (59 days). Thus, our negative bias procedure can successfully eliminate the cancer stem cell 
base in the tumor, though the time taken is a little longer. 

 

Figure 8. Complete elimination of cancer stem cells. The tumor will need more time for 
the cancer stem cells to be extinct (in 59 days) with chemotherapy sensitivity at 1% of 
usual cancer cells. 

 

Figure 9.  Decrease of tumor cells population with different initial conditions. Extinction 
of the tumor occurs regardless of the initial conditions. 
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(iv). Adaptability and robustness of tumor elimination process 

In real-life conditions, different patients can have different initial conditions and constitutions. 
Hence, different patient-specific initial situations are now considered, for example, we examined the 
different initial condition of immunological system (like populations of the different effector cells) and 
carried out 500 arbitrarily simulations for complete tumor elimination for melanoma tumor with 
different biological parameters or characteristics (Figure 9). 

We found that tumor extinction occurred in 100% cases if the coefficient of variation in effector 
cell population was 0%, while extinction happened in 98% of the cases if the coefficient of variation 
was increased to 10%. It has been known that the physiological parameters are generally kept constant 
homeostatically by organisms, with a 10% variation around the mean level [45]. Thus, within the 
considered range of physiological variation, it transpires that our proposed approach may be able to 
induce tumor elimination in the majority of the cases (98% of cases). 

 

Figure 10. For complete regression of tumors with different initial conditions, the time-
wise alteration of the tumor-affecting entities involved does follow the common pattern 
template: (a) Bimodal intensity of Cytotoxic T-cell, (b) Unimodal intensity of DNA 
blockade factor, (c) Uniform stationary intensity of Interleukin-2, (d) Saturating intensity 
of Natural killer cells and Circulating lymphocytes. 

(v). General characteristics of tumor regression process 

We have simulated the permanent tumor regression process using different values of the tumor 
parameters, and we have always observed the similar type of patterns as in Figure 7. This general 
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pattern is exhibited in Figure 10, whereby we note that for inducing permanent tumor regression, the 
three antitumor entities should have three distinct temporal profiles (tri-phasic activation): 
1) Bimodal intensity for lymphocyte activation, showing two temporal peaks (Figure 10 (a)),  
2) Unimodal intensity for activation of DNA damage (such as strand blockade or alkylation), 
displaying one peak temporally (Figure 10(b)). 
3) Stationary intensity for cytokine activation (interleukin-2) exhibiting uniform level (Figure 10(c)). 

(vi). Basis of the tri-phasic activation  

The three aforesaid activational phases can be accounted for from a dynamic perspective of 
Figure 11. Initially, in the tumor cell surroundings, there occurs tumor cell antigen binding to T-
lymphocyte receptor, stimulating the secretion of IL-2 (event-1). Thereby, T-cell is activated to 
cytotoxic T-cell (event-2). This T-lymphocyte then counters a tumor cell, secretes granzyme protease, 
which binds to tumor cell DNA, cleaving the nucleic acid binding protein, blockading the DNA and 
damaging tumor cell DNA replication (event-3). Note that in event-1, since there are no second-order 
deceleration terms nor Michelis-Menten terms in Eq (1), the interleukin level can rise rapidly or steeply, 
nevertheless the increase of interleukin halts or saturates as soon as the interleukin toxicity level or 
upper bound is reached. 

The aforesaid three sequences of events are clearly reflected in the three temporal profiles above. 
The first event corresponds to Interleukin-2, the earliest agent to increase (Figure 10(c)). Then, the 
second event correlates with cytotoxic T-cell increase, but sometime later (Figure 10(a)). Thereafter, 
the third event relates to the increase of tumor cell’s DNA damage intensity, which happens still later 
Figure 10(b). Here, tumor cells are increasingly lyzed, and their debris thus produced deactivates the 
cytotoxic T-cells whose activated population hence decreases, this corresponds to the negative term 
“-qAM” in Eq (6). As tumor cell population continues to decrease, its debris production falls, so that 
the negative term becomes smaller, whereby cytotoxic T lymphocyte population increases again 
(second temporal peak) (Figure 10(a)). 

 

Figure 11. Basis of the tri-phasic activation process in tumor regression as illustrated by 
the three temporal transitions. 
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We may recollect that the step-like shape and stationarity in the interleukin-2 concentration is due 
to its level being initiated rapidly at the requisite intensity (Figure 10(c)). Such a brisk interleukin 
response has also been independently observed in the immunological system, where requisite stimulation 
can enable interleukin-2 receptor activation to reach substantial intensity within 2-4 days [46]. The result 
is that a stationary level of interleukin activation is rapidly attained, and tumor regression occurs. 
Indeed, it is well known from clinical experience [32], that interleukin-2 administered at significantly 
augmented dose, induces long-lasting immunomodulation to act against those residual malignant cells 
that bypass usual therapeutic intervention. 

3.3. Experimental validation 

We now furnish experimental findings of complete permanent tumor regression that provide 
substantiation and corroboration to our mathematical theoretical model of complete elimination of 
tumor by the five-pattern temporal profile (Figure 10), namely the activation of antitumor lymphocyte 
(bi-modality), DNA damage or impairment (unimodality), interleukin-2 (stationarity), circulating 
lymphocyte (saturation) and NK cell (saturation). 

3.3.1. Malignant melanoma elimination 

(i) Melanoma microarray data preprocessing: 

The microarray raw data of file of the spontaneous regression of malignant melanoma tumor was 
downloaded from the ArrayExpress system (E-MEXP-1152) and analyzed using the Bioconductor 
package on the R platform. Furthermore, one-way ANOVA was performed for five different time points 
(taking time t0 as the reference) to find the differentially expressed genes based on p value and FC value (p 
value < 0.05 and FC > 2). The ANOVA analysis results showing the differentially expressed genes 
(DEGs) is displayed in Figure 12. 

 

Figure 12. Volcano plots for differentially expressed genes. ANOVA analysis results 
showing DEGs plot: blue color signifies the downregulated genes, red color signifies the 
upregulated genes, and black color signifies the non-significant genes. 
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(ii) Identification of signaling pathways: 

Permanent endogenous melanoma regression microarray data of pigs were investigated by IPA. We 
assessed the antitumor T-cell activation intensity by the level of the IPA’s T-cell pathway, named “PD-
1/PD-L1 cancer immunotherapy pathway”. Similarly, we gauged the DNA impairment level by the 
IPA pathway “G2/M DNA Damage Checkpoint Regulation”. Likewise, we estimated the Natural-
Killer cell level by IPA pathways “NK cell signaling”. Furthermore, we assay the Circulating 
lymphocyte level by the IPA pathway (“Leucocyte extravasation signaling”); indeed, one knows that 
during immune response, the extravasation of circulating leucocyte through the vascular wall into 
tumorous tissue, correlates with activation of circulating lymphocytes [47].  

 

Figure 13. Comprehensive experimental validation of the prediction of the computational 
model. Behaviour of the various formulated entities needed for malignant tumor regression 
(melanoma) are shown, the entities being antitumor T-cells, DNA damage, Circulating 
lymphocytes, and Natural killer cells. (a)–(d) Activation of the biological readouts 
obtained using microarray data of the respective tissues at the various time-points, the 
vertical y-axis is in LLS units, i.e., log level of significance (i.e., log (p-value)). Regarding 
the four curves, it is evident that their activations are respectively of bimodal (panel (a)), 
unimodal (panel (b)), and saturation patterns (panel (c), (d)), which are also predicted by 
our computational model developed theoretically for tumor regression (patterns of the 
computationally predicted theoretical curves are in Figures 7 and 10).  



9595 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 9572–9606. 

Thus, we found the specific temporal behaviour of the activation levels of cytotoxic T-lymphocytes 
(Figure 13(a)), DNA impairment (Figure 13(b)), circulating leucocytes (Figure 13(c)), and natural killer 
cells (Figure 13(d)). It is evident that the first and second curves (Figure 13(a, b) follow respectively the 
bimodality and unimodality pattern of Figure 10(a,b). Also, the third and fourth curves (Figure 13(c, d)) 
both follow the saturation pattern of Figure 10(d). Thus the four experimental curves of Figure 13 closely 
correspond to the mathematically predicted patterns of Figure 10. 

To show that our theoretically calculated model of tumor regression (Figure 7) adequately 
describes the experimentally observed tumor regression behaviour (Figure 13), we used the goodness-
of-fit criterion (Kolmogorov-Smirnov test). Accordingly, we found that the experimental graphs of 
panels (a)–(d) of Figure 13 are satisfactorily accounted respectively by the corresponding theoretical 
graphs of panels (b, c, e, f) of Figure 7, and the corresponding goodness-of-fit Kolmogorov-Smirnov’s 
statistical test was satisfied (α = 5%).  

Now, we arrive at the molecular biological basis of aforesaid biological entities involved in 
permanent endogenous tumor regression. Using genetic analysis, we also found the genes associated 
with these different entities, which we elucidate below. Table 1 (left three columns) summarizes the 
main aspects of our findings. 

(iii) Identification of genes 

We found the signaling pathways and related genes for spontaneous regression using IPA. We 
selected the gene based on FC-value from the cluster of gene obtained from IPA, for different 
biological classes. Accordingly, we have furnished below the two lead exemplar genes for the 
antitumor functions as follows (also see Table 1, right two columns):  
(a) DNA Damage-related genes: CDC2, CHEK;  
(b) Interleukin-2 signaling-related genes: IL2RG, AKT3;  
(c) Natural-killer cell signaling-related genes: NKG2D, KLRK;  
(d) Cytotoxic T-cell activation-related genes:  TRGV5, CD28;  
(e) Circulating lymphocyte activation-related genes: TCA, CCL5. 
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Table 1. Biologically-based experimental corroboration of the computed activation 
functions of the antitumor entities which enable complete tumor elimination: The 
characteristic computed functions [Eqs (1)–(4), (6)] are in the first column, rows 2–6), and 
for each of these functions, their corresponding biological significance and relationships 
are provided in the other columns. The negative bias function is also included as row 7).  

Characteristic 

function 

predicted by 

mathematical 

model 

Biological 

entities involved 

Biological basis of the 

characteristic function 

Exemplars of genes 

involved in 

the antitumor 

characteristic 

Illustrative 

findings 

Monophasic  

Activation 

 (DNA blockage) 

DNA. 

Chemomodulation: 

Cell multiplication 

blockage. 

Build-up and then decay 

of DNA 

chemomodulative  

or blockage activity.  

Cell kinase gene:  

CDC2, CHEK1 

Cell cycle gene:  

CCNB1, CCNB3 

Figure 7(c), 

Figure 13(b) 

 

Biphasic 

activation  

(Cytotoxic T-cell) 

 

Lymphocyte 

enhancement: 

Lysis of tumor 

cells. 

 

 

Second rise (biphasicity) 

in T- cell population due 

to decline of 

chemomodulation, i.e., 

decrease in  

blockage of T-cell 

growth.  

T-cell receptor activation: 

TRGV5 gene, CD28 gene. 

 

G-protein coupled 

receptor activation:  

CALCR gene, CBLB gene. 

Figure 7(b), 

Figure 13(a) 

Uniform 

Stationary 

activation 

(Interleukin-2) 

Cytokine 

enhancement: 

Escalating the 

leucocyte-tumor 

cell interaction. 

Toxicity   

limit of cytokine  

(homeostasis). 

Interleukin-2 receptor 

gene: IL2RG, AKT3 gene. 

 

Transmembrane protein: 

CD74, GRB2 gene.  

Figure 7(d), 

Figure 14(a) 

 

Saturating 

Activation 

(Natural killer 

cell) 

 

Natural killer cell 

function  

(normal tissue 

protection). 

Equilibrium state after 

Tumor regression. 

NK cell activator gene: 

NKG2D gene, STAT4 gene 

Actuates NK cell function 

activators:  KLRK1 gene, 

MAP3K12 gene.  

Figure 7(f), 

Figure 13(d) 

 

Saturating 

Activation 

(Circulating  

lymphocyte) 

Circulating 

lymphocyte  

function (host 

defense). 

Equilibrium state after 

Tumor regression. 

Chemokine ligand 1 

activity: TCA gene - 

Actuates lymphocytes & 

monocytes. 

Rantes ligand activity: 

CCL5 and PRKCB genes - 

Actuates lymphocyte & 

monocytes.  

Figure 7(e), 

Figure 13(c) 

 

 

Negative biasing Apoptosis pathway Elimination of residual 

tumor cells. 

Extrinsic apoptosis 

pathway activator genes: 

CASP7 gene, GZMB gene. 

Intrinsic apoptosis 

pathway activator gene: 

BCL2L1 gene 

Figure 1(b), 

Section 3.3.1 

(iv) 
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(iv) Negative bias related genes: CASP7, GZMB. 

Now, for identifying the genes that function as effecting the negative bias in tumor cell reduction 
trajectory, we have selected the genes which are responsible for the apoptosis process of the tumor 
cells, namely the Perforin/Granzyme apoptosis pathway activator genes: CASP7, GZMB. In other 
words, the pathway is a serine protease pathway, which is a primary signaling route used by cytotoxic 
T cells and natural killer cells to eliminate virus-infected or mutated malignant cells [48]. Cytotoxic T 
cells have perforin, which is a pore forming complex, while Granzyme B (GZMB) is an apoptotic 
signaling molecule that is able to initiate apoptotic signal by the process of exocytosis. After getting 
into the mutated malignant cell, this GZMB molecules interact with BID protein of the cells, which is 
actually the BH3 interacting domain death family protein that initiates the apoptosis process by 
activating caspase 7. As shown in Table 2, the expression values of these two genes (CASP7 and GZMB) 
increased from time point t1 through t4, while the tumor regression process advanced with time and 
this regression process was maximum at t4 time point (where the tumor has completely regressed and 
become extinct). Indeed, the aforesaid proteins actuated by these two genes were able to attack and 
lyze all the residual tumor cells in the last time segment (t3–t4), thereby preventing tumor relapse. 

Table 2. Genes inducing Negative bias with their activity values at different time points. 

Gene Name Log2FC 
value 
(at time t1) 

Log2FC 
value 
(at time t2) 

Log2FC 
value 
(at time t3) 

Log2FC 
value 
(at time t4) 

p. value F Average 
Expression 

GZMB 
(Granzyme-
B) 

−0.07314 0.525236 1.124219 2.326586 0.00011 10.0495 6.086244 

CASP7 
(Caspase-7) 

−0.02369 0.12626 0.570303 1.488125 0.03849 4.8372 7.215214 

3.3.2. Malignant histiocytoma elimination 

Here complete endogenous regression of malignant histiocyte tumor in rodent system was analyzed. 
The experimental investigation is available, along with biochemical parameters [49]. In Figure 13 we 
delineated the temporal behaviour of the relevant parameters, which we have calculated from that 
initial study. The experimental study was done for 32 days, and two types of tumor regression regimes 
were observed: (i) Early regressor animals, where tumor size increased up to the 10th day, then tumor 
regression  occurred, (ii) Late regressor animals, who display tumor size increased till about the 20th 
day, and tumor regression started thereafter [49]. Hence, to observe the tumor decline process for a 
substantial duration, we analyzed the findings of the first group, where regression deviation was 
observed longer, namely across 22 days (in the second group, the regression duration was much shorter, 
only for 12 days). We note that the experimental graphs showing temporal profile of interleukin-2 and 
DNA impairment (Figures 14(a,b)) are satisfactorily described by the corresponding theoretical graphs 
predicted (Figure 7(d,c)), the Kolmogorov-Smirnov statistical test of goodness-of-fit being also 
satisfied (α = 5%). 



9598 

Mathematical Biosciences and Engineering  Volume 20, Issue 5, 9572–9606. 

 

Figure 14. Permanent regression of malignant tumor: Empirical confirmation of the 
activation functions of the computational model, the tumor being malignant histiocytoma. 
(a) Interleukin-2 level as tumor regression ensues across time: the activation level is 
practically stationary. (b) Intensity of DNA damage, as gauged by level of TNF- that 
induces DNA strand breaks. Note that here the activation function is unimodal. 

4. Discussion 

We have developed a quantitative mechanistic formulation and analysis of the permanent 
spontaneous regression of the malignant tumor, with experimental validation and its clinically-relevant 
implications. This extinction of tumor cells is possible due to a negative biasing process. We have 
delineated the temporal profile of the causative factors that enable the complete extinction of the tumor, 
namely:  
(i) the three separate activation characteristics (unimodal, bimodal and uniform stationary activation 

function) respectively of DNA damage or mitosis blockage, cytotoxic lymphocyte and cytokine IL-2 
(ii) the two separate saturation activation profiles of both the natural killer cells and circulating 

lymphocytes.  
This multiphasic temporal orchestration of the antitumor entities minimizes toxicity to normal 

tissue, without damaging the usual host tissue. Furthermore, we have also obtained experimental 
corroboration of our theoretical mathematical formulation of the process of permanent regression of 
tumor, whether spontaneous regression of tumor or therapy-induced regression of the tumor. We now 
elaborate the clinically-pertinent implications of the research. 

4.1. Normal tissue protection 

An important aspect of the methodology developed is survival and safeguarding of normal tissue, 
while at the same time the tumor lesion is being eliminated. Taking care of these two contradictory 
objectives, our procedure performs the following two contrasting functions:  
(i) Minimization of toxicity to the normal tissue due to the antitumor entities: This is done by 

developing a toxicity cost parameter which is kept minimal using standard Lagrangian method.  
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(ii) Keeping the concentration of antitumor entities within tolerated ranges: This is done by using 
physiological limits to the level of DNA damage, cytotoxic T-cells, IL-2, circulating lymphocytes 
and NK cells. 
A major handicap in oncology is that often treatment (chemotherapy and radiotherapy) is started 

vigorously [50,51], but soon the intervention has to be stopped or downscaled due to the toxicity to 
normal tissue. Thus, in the latter stage, the tumor proliferates and spreads out through vascular 
metastasis. In the clinical scenario, an important aspect is that the therapeutic agents may cause 
considerable damage to normal tissue, such as tissue inflammation and infection, since the normal 
immunological balance and homeostasis has been impaired due to the drug-induced lysis of the 
circulating lymphocytes and natural killer cells whereby these cell populations fall below normal 
protective range. This hazardous condition does not occur in our formulation, since the antitumor 
entities (or therapeutic agents) and their toxicity functions are always kept within biological bounds, 
such that the immunological cells (circulating leucocytes and NK cell levels) are always maintained 
within normal limits, thus protecting against infection and inflammation.  

4.2. Robustness of cancer stem cell abolition with negative bias  

As is well-known, a critical factor responsible for the failure of tumor containment is the presence 
of a small side-population of cancer stem cells, which are distinct from the usual cancer cells. 
Conventional antitumor intervention may act well on the usual cancer cells (the majority part of tumor 
tissue), the tumor may shrink and become clinically undetectable. However, the small population of 
cancer stem cells are far more resistant to antitumor drugs since they have drug ejecting efflux-channels, 
so that these cells survive the drug effect and proliferate continuously, and the tumor soon recurs and 
disseminates [52]. For instance, the sensitivity of these cancer stem cells to antitumor drugs are only 
8–23% of the sensitivity of usual cancer cells to the drug [44].  

On the other hand, our negative biasing procedure can successfully eliminate cancer stem cell 
based tumors, though the time taken is longer than eliminating usual cancer cells. This indicates that 
more DNA damage induction (i.e., DNA-damaging drug agent) would be needed for lysing the cancer 
stem cells which are more chemotherapy resistant. However, it may be noted, that there are no normal 
tissue toxicity issues in our cancer stem cell elimination process, as the physiological bounds are always 
being maintained. Furthermore, our procedure is robust enough (Figure 9), that is all the malignant stem 
cells are eliminated even if there is appreciable patient-specific variation in the tumor cell population. 

4.3. Double pulsed lymphocyte activation for final tumor eradication 

A critical element enabling complete tumor regression is the bimodal activation of antitumor 
lymphocytes. The requirement of such bimodal activation, one peak each in the initial and in the later 
phases of the regression process, is corroborated by the experimental studies presented here. In 
conventional multimodal therapy (Figure 6) where often temporary but not permanent regression 
occurs, here the T-cell immunotherapy is administered usually at a week’s time (day 7–8), and the 
second peak in T-cell population is absent. We can construe that the second T-cell peak is essential to 
completely eradicate the residual malignant cells in the late stage of the regression process. Just before 
the occurrence of the second peak, the tumor cell population is below 5% of the initial tumor population 
(Figure 7(a)), i.e., the vast majority of the tumor cells has already been eliminated by that time, 
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nevertheless a second T-cell peak is needed to eliminate the residual tumor cells to prevent relapse. As 
we have shown, the second peak can be therapeutically induced by suitable dosing of the tumor 
infiltrating lymphocyte injection from the first day itself (Figure 13(a)), instead of having the week-
long delay that customary therapy prescribes. The lack of the second T-cell dosage peak might be a 
factor why in the well-known clinical trial of the T-cell therapy [53], one observes that the majority of 
patients (54%) showed no response, while the others showed only a partial response with tumor 
somewhat shrinking yet remaining extant, a portent of future relapse. 

Our cytotoxic T-cells (CTL) immuno-modulation used is of tactical utility, as these cells can 
exhibit [54] a range of unique behaviors, that chemotherapeutic drugs cannot, such as: 

(a) the T-cells can migrate to the primary and secondary growths of the tumor, even in hidden 
tissue depths,  

(b) CTLs can continue to automatically multiply in response to immunogenic proteins of 
malignant cells, until all those tumor cells become extinct,  

(c) T-cells enable immune memory to be stored, allowing further elimination of the tumor, if there 
is recurrence.  

Though our proposal of doublet pulse therapy has not been earlier used in oncology, a doublet 
pulse approach to cytotoxic therapy has been satisfactorily used in other cell proliferation disorders, as 
Wegener’s granulomatosis [55]. Hence, our proposed double pulse lymphocyte activation procedure 
may hold appreciable potentiality in the clinical oncology scenario. 

4.4. Therapeutic implications of the natural process of spontaneous regression of tumor 

Utilizing a systems analysis methodology, our investigation endeavors to elucidate a general 
unitary basis of tumor regression, which can be applied to both processes: (a) endogenous or 
spontaneous regression (b) exogenous or therapy-induced regression. Our investigation has formulated 
that the basic dynamics of both regression processes are comparable and equivalent, and consists of 
three aspects: (i) DNA interference in malignant cell, (ii) cytokine-based activation of tumor tissue 
environment (IL-2), and (iii) actuation of antitumor white blood cells (lymphocytes). The paradoxical 
phenomenon of spontaneous tumor regression has intrigued physicians since the time of St. Peregrines, 
the patron saint of cancer, these inquirers pondered how the process could be therapeutically replicated 
on patients, though now the process is known to be much ubiquitous, as the Wisconsin [5] and 
Scandinavian [4] cancer population registries show.  

To analyze the spontaneous cancer regression phenomenon more precisely, we have quantified 
the regression behaviour in terms of numerically-based DNA interference sites across the tissue 
(section 2.1 of Supplement). This same DNA interference formulation was shown to apply to drug-
induced tumor regression, delineating the unitariness of the two processes. To paraphrase, our 
investigation of the spontaneous tumor regression process can help design newer modalities of 
therapeutic regression or treatment. Actually, our approach using three antitumor agents does notably 
satisfy the requirements needed for mimicking the occurrence of spontaneous tumor regression, as 
analyzed from the immunoediting perspective. From this immunoediting analysis, the requirements 
for spontaneous regression are (i) lymphocyte activation (ii) cytokine/interleukin-based activation of 
antitumor cells (ii) tumor DNA interference using microbial metabolites [56].  
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4.5. Practical implementation: Enforcement of tumor extinctioncomputational feedback approach 

Our model applied for both endogenous and exogenous tumor regression, the latter implying 
tumor regression under therapy. Hence our formulation has incisive implications for clinical treatment. 
A seminal aspect of our formulation is the incorporation of feedback approach (Figure 4), whereby the 
antitumor entities (DNA damaging entity, interleukin-2, and lymphocytes) are primally and accurately 
varied with time, such that the tumor cell population undergoes extinction in the specific time duration 
(around 40–60 days), by following an optimum natural exponentially decreasing trajectory (with 
negative bias, Figure 1(b)). In other words, this declining curve furnishes the guidance for a trajectory 
which needs to be followed by the tumor cell population to reach a population of zero in the definitive 
time period. During the simulation process, after suitable time interval (time-step), one updates the 
tumor cell population which has declined a bit in the earlier time interval due to the action of the 
antitumor entities (Section 2.5 and Figure 5). This updated tumor cell population is used (at the next 
time-step) to determine the new values of antitumor entities, which are implemented iteratively in the 
simulation loop, and the tumor cell population declines a further bit, so that across successive time 
intervals, the tumor cell population follows the exponentially decreasing curve to extinction.  

As time progresses, and if at any point, there is any incongruence of the actual tumor cell 
population from the mathematical tumor cell population of the exponential curve, the feedback control 
system (Figure 5) acts by altering the values of the antitumor entities, so that the error is corrected, and 
the trajectory of the tumor cell population is also corrected, thereby following the exponential curve. 
The feedback control approach is in marked contrast to the customary approach in clinical oncology, 
where the antitumor entities are given in fixed-dose planned out beforehand, and the dosages do not 
adapt to the variable patient response, and neither to the varying tumor load day-to-day. There were 
earlier attempts to use feedback control system for antitumor therapy [57] but, as far as we know, they 
have not been on the lines proposed here, namely trajectory guidance control that enforces the tumor 
system to persistently reach the target (zero malignant cell population), with inbuilt ability for error 
correction and adaptation.  

4.6. Clinical translation: Towards complete tumor elimination by negative biasing 

We can now clarify the modus operandi for clinical applications. We may formulate the 
generalization of the tissue-induced process of endogenous tumor elimination, so as to develop the 
therapy-induced process of exogenous tumor regression. For permanently eliminating the tumor, Eqs 
(9), (11) and (12) respectively provides the required time-varying profile of the intensities of the three 
entities in the tissue: (i) DNA damage, D(t)‡, (ii) cytotoxic lymphocyte population A(t)‡, and (iii) 
cytokine interleukin-2 concentration, C(t)‡. In endogenous tumor regression, these levels are generated 
intrinsically by the host tissue, such as by cellular metabolism and gene activation/deactivation as seen 
in our analysis of melanoma regression (Figure 12). Likewise, for clinical applicability on patients, we 
need to induce the exogenous tumor elimination by externally administering therapeutic agents that 
would produce the requisite temporally-altering levels of the aforesaid entities (i)–(iii), namely the 
three agents would be a chemotherapeutic agent (e.g., dacarbazine, or cyclophosphamide etc.), 
cytotoxic T-cells, and interleukin-2 preparation (Figure 2). Each of these agents can be given by time-
varying continuous intravenous infusion by an injected fluctuating dose-rate function, vD(t) ‡, vA(t) ‡ 
and vC(t) ‡ (Section 2.5), which can be readily calculated from the required levels of the three entities 
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in the tissue D(t)‡, A(t)‡ and C(t)‡ (Figure 5 and Section 2.5). Thus, if those temporal dose-rate patterns 
of the three therapeutic agents are injected, then the levels of those agents in the tissue would be D(t)‡, 
A(t)‡ and C(t)‡, whereby the tumor cell population would follow the trajectory in Figure 15, becoming 
extinct at time tp days, with no tumor recurrence nor toxicity to the patient. 

  

Figure 15. Clinical implementation of the feedback-based tumor elimination procedure, 
using cytologically-based tumor burden monitoring procedure (e.g., liquid biopsy in blood, 
or Spect imaging) at weekly time intervals. 

5. Conclusions 

In retrospect, our approach, validated by experimental findings, shows that a robust quantitative 
systems biology formulation can be developed to obtain incisive mechanistic insights into the 
process of complete permanent tumor regression, which often occurs naturally in the form of 
endogenous spontaneous regression as noted in cancer registries of general populations. 
Alternatively, the tumor regression process can be replicated therapeutically by antitumor agents, as 
chemotherapy and immunotherapy. The salient feature of our formulation is that the regression is 
enabled by very specific but universal characteristics of the antitumor entities, namely single peak 
level of DNA damaging factor, double pulse level of white blood cell activation (T-lymphocyte), and 
uniform activation level of the immunomodulator cytokine (IL-2). Indeed, the second pulse feature 
of lymphocyte activation is an unexpected finding and accounts for the complete extinction of all 
the residual tumor cells which is in the order of 1% of the initial tumor load. The absence of this 
second pulse of lymphocytes in customary multimodal therapies may be a factor that prevents these 
therapies to induce lasting tumor eradication, and one often observes tumor relapse in these cases. 
Our proposed formulation does not have high-intensity levels of any of the therapeutic agents for a 
prolonged time, their levels can become much less at intervening times, and there is no appreciable 
drug-induced toxicity as the immune system (circulating lymphocytes and natural killer cells) are 
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kept always protected. Thus, it can be suggested that combinational multi-pulsed multimodal therapy, 
using systems biology based analysis, can offer a principled approach to permanent tumor 
elimination, with germane implications for the clinical oncology scenario. 
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