Ageing and Cancer Research & Treatment

Authors

  • Graham Pawelec University of Tübingen, Germany
  • Valquiria Bueno Valquiria Bueno, UNIFESP - Botucatu Street 862, 4o floor - Immunology Division - São Paulo, Brazil 04023-900

DOI:

https://doi.org/10.37155/2972-4759-2023-01-01-1

Keywords:

ageing, cancer, inflammageing, comorbidities, treatment, geriatric oncology, immunosenescence

Abstract

Increasing life expectancy globally results in predictions that one in six people will be >65 years of age by 2050. Because the occurrence of most cancers is strongly associated with older age, a significant increase in the number of older adults with cancer is to be expected. It is likely that increased cancer in older adults can be explained both by the greater duration of exposure to external factors such as ultraviolet radiation, alcohol, smoking and pollution (hence modifiable by non-medical means) as well as intrinsic factors (such as metabolic stress and reactive oxygen species). These insults contribute to DNA damage and mutation that can lead to carcinogenesis if not counteracted by the appropriate repair mechanisms, or other protective strategies. Tissues from cancer-free individuals frequently contain mutations commonly observed in cancer, but these cells remain dormant until some endogenous or exogenous events promote carcinogenesis. In ageing individuals, less efficient surveillance and immune responses against cancer may represent one such event, as well as the chronic low level inflammation commonly accompanying ageing. Additionally, because of comorbidities, older patients are less robust and it is more likely that polypharmacy interferes with cancer treatment. Despite all this awareness of the impact of ageing, most cancer research, both clinical and preclinical, fails to fully consider age-associated differences in cancer occurrence and treatment, and there are very few journals specifically dedicated to publishing explorations of these issues in either the basic research or clinical context. Hence, the time has come to establish a new journal dedicated to taking a holistic approach to all aspects of cancer in older individuals. We are therefore now welcoming papers that may shed light on these increasingly important issues.

References

Foreman K J, Marquez N, Dolgert A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories[J]. The Lancet, 2018, 392(10159): 2052-2090. https://doi.org/10.1016/S0140-6736(18)31694-5

Evert J, Lawler E, Bogan H, et al. Morbidity profiles of centenarians: survivors, delayers, and escapers[J]. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 2003, 58(3):M232-M237.

https://doi.org/10.1093/gerona/58.3.M232

Nolen S C, Evans M A, Fischer A, et al. Cancer—incidence, prevalence and mortality in the oldest-old. A comprehensive review[J]. Mechanisms of ageing and development, 2017, 164: 113-126. https://doi.org/10.1016/j.mad.2017.05.002

Siegel R L, Miller K D, Jemal A. Cancer statistics, 2019[J]. CA: a cancer journal for clinicians, 2019, 69(1): 7-34.

https://doi.org/10.3322/caac.21551

Diebel L W M, Rockwood K. Determination of biological age: geriatric assessment vs biological biomarkers[J]. Current Oncology Reports, 2021. 23(9): 104.

https://doi.org/10.1007/s11912-021-01097-9

Hägg S, Jylhävä J. Should we invest in biological age predictors to treat colorectal cancer in older adults?[J]. European Journal of Surgical Oncology, 2020, 46(3): 316-320.

https://doi.org/10.1016/j.ejso.2019.11.003

Acha-Sagredo A, Ganguli P, Ciccarelli F D. Somatic variation in normal tissues: friend or foe of cancer early detection?[J]. Annals of Oncology, 2022. 33(12): 1239-1249.

https://doi.org/10.1016/j.annonc.2022.09.156

Lee-Six H, Olafsson S, Ellis P, et al. The landscape of somatic mutation in normal colorectal epithelial cells[J]. Nature, 2019, 574(7779): 532-537. https://doi.org/10.1038/s41586-019-1672-7

Fowler J C, King C, Bryant C, et al. Selection of Oncogenic Mutant Clones in Normal Human Skin Varies with Body SiteSomatic Mutations and Cancer Risk in Skin across the Body[J]. Cancer discovery, 2021, 11(2): 340-361. https://doi.org/10.1158/2159-8290.CD-20-1092

Buhigas C, Warren A Y, Leung W K, et al. The architecture of clonal expansions in morphologically normal tissue from cancerous and non-cancerous prostates. Mol Cancer, 2022. 21(1): 183.

https://doi.org/10.1186/s12943-022-01644-3

Jan M, Snyder T M, Corces-Zimmerman M R, et al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia[J]. Science translational medicine, 2012, 4(149): 149ra118.

https://doi.org/10.1126/scitranslmed.3004315

Loh P R, Genovese G, Handsaker R E, et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations[J]. Nature, 2018, 559(7714): 350-355.

https://doi.org/10.1038/s41586-018-0321-x

Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes[J]. New England Journal of Medicine, 2014, 371(26): 2488-2498.

https://doi.org/10.1056/NEJMoa1408617

Jaiswal S, Ebert B L. Clonal hematopoiesis in human aging and disease[J]. Science, 2019, 366(6465): eaan4673.

https://doi.org/10.1126/science.aan4673

Cereser B, Jansen M, Austin E, et al. Analysis of clonal expansions through the normal and premalignant human breast epithelium reveals the presence of luminal stem cells[J]. The Journal of pathology, 2018, 244(1): 61-70. https://doi.org/10.1002/path.4989

Vogelstein B, Papadopoulos N, Velculescu V E, et al. Cancer genome landscapes[J]. Science, 2013, 339(6127): 1546-1558.

https://doi.org/10.1126/science.1235122

Ballesteros-Arias L, Saavedra V, Morata G. Cell competition may function either as tumour-suppressing or as tumour-stimulating factor in Drosophila[J]. Oncogene, 2014, 33(35): 4377-4384.

https://doi.org/10.1038/onc.2013.407

Hoeijmakers J H J. DNA damage, aging, and cancer[J]. New England Journal of Medicine, 2009, 361(15): 1475-1485.

https://doi.org/10.1056/NEJMra0804615

Schumacher B, Pothof J, Vijg J, et al. The central role of DNA damage in the ageing process[J]. Nature, 2021, 592(7856): 695-703. https://doi.org/10.1038/s41586-021-03307-7

Alexandrov L B, Nik-Zainal S, Wedge D C, et al. Signatures of mutational processes in human cancer[J]. Nature, 2013, 500(7463): 415-421. https://doi.org/10.1038/nature12477

Medema R H, Macůrek L. Checkpoint control and cancer[J]. Oncogene, 2012, 31(21): 2601-2613.

https://doi.org/10.1038/onc.2011.451

Hadar A, Voinsky I, Parkhomenko O, et al. Higher ATM expression in lymphoblastoid cell lines from centenarian compared with younger women[J]. Drug Development Research, 2022, 83(6): 1419-1424. https://doi.org/10.1002/ddr.21972

Wang J L, Guo H L, Wang P C, et al. Age-dependent down-regulation of DNA polymerase δ1 in human lymphocytes[J]. Molecular and cellular biochemistry, 2012, 371: 157-163.

https://doi.org/10.1007/s11010-012-1432-6

Aparicio T, Schischmanoff O, Poupardin C, et al. Deficient mismatch repair phenotype is a prognostic factor for colorectal cancer in elderly patients[J]. Digestive and Liver Disease, 2013, 45(3): 245-250. https://doi.org/10.1016/j.dld.2012.09.013

Chalmers Z R, Connelly C F, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden[J]. Genome medicine, 2017, 9: 1-14.

https://doi.org/10.1186/s13073-017-0424-2

Coppé J P, Desprez P Y, Krtolica A, et al. The senescence-associated secretory phenotype: the dark side of tumor suppression[J]. Annual review of pathology: mechanisms of disease, 2010, 5: 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144

Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas[J]. Nature, 2007, 445(7128): 656-660.

https://doi.org/10.1038/nature05529

Sagiv A, Krizhanovsky V. Immunosurveillance of senescent cells: the bright side of the senescence program[J]. Biogerontology, 2013, 14: 617-628. https://doi.org/10.1007/s10522-013-9473-0

Ovadya Y, Landsberger T, Leins H, et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging[J]. Nature communications, 2018, 9(1): 5435.

https://doi.org/10.1038/s41467-018-07825-3

Pawelec G. Hallmarks of human “immunosenescence”: adaptation or dysregulation?[J]. Immunity & ageing, 2012. 9(1): 15. https://doi.org/10.1186/1742-4933-9-15

Sikora E, Bielak-Zmijewska A, Mosieniak G. A common signature of cellular senescence; does it exist?[J]. Ageing research reviews, 2021, 71: 101458. https://doi.org/10.1016/j.arr.2021.101458

Pereira B I, Devine O P, Vukmanovic-Stejic M, et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition[J]. Nature communications, 2019, 10(1): 2387. https://doi.org/10.1038/s41467-019-10335-5

Wang, T W., Johmura, Y., Suzuki, N. et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature, 2022. 611(7935): 358-364.

https://doi.org/10.1038/s41586-022-05388-4

Schreiber R D, Old L J, Smyth M J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion[J]. Science, 2011, 331(6024): 1565-1570.

https://doi.org/10.1126/science.1203486

Galon, J., Pagès, F., Marincola, F.M. et al. Cancer classification using the Immunoscore: a worldwide task force. J Transl Med, 2012. 10: 205. https://doi.org/10.1186/1479-5876-10-205

Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science, 2006, 313(5795): 1960-1964.

https://doi.org/10.1126/science.1129139

Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies[J]. Nature reviews Drug discovery, 2019, 18(3): 197-218.

https://doi.org/10.1038/s41573-018-0007-y

Salih Z, Banyard A, Tweedy J, et al. T cell immune awakening in response to immunotherapy is age-dependent[J]. European Journal of Cancer, 2022, 162: 11-21.

https://doi.org/10.1016/j.ejca.2021.11.015

Pawelec G. Does patient age influence anti-cancer immunity?[C]//Seminars in immunopathology. Berlin/Heidelberg: Springer Berlin Heidelberg, 2019, 41(1): 125-131.

https://doi.org/10.1007/s00281-018-0697-6

Kugel III C H, Douglass S M, Webster M R, et al. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations[J]. Clinical Cancer Research, 2018, 24(21): 5347-5356.

https://doi.org/10.1158/1078-0432.CCR-18-1116

Giunco S, Petrara M R, Bergamo F, et al. Immune senescence and immune activation in elderly colorectal cancer patients[J]. Aging (Albany NY), 2019, 11(11): 3864-3875.

https://doi.org/10.18632/aging.102022

Franceschi C, Capri M, Monti D, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans[J]. Mechanisms of ageing and development, 2007, 128(1): 92-105. https://doi.org/10.1016/j.mad.2006.11.016

McAndrew N P, Bottalico L, Mesaros C, et al. Effects of systemic inflammation on relapse in early breast cancer[J]. NPJ Breast Cancer, 2021, 7(1): 7. https://doi.org/10.1038/s41523-020-00212-6

Lau L, David G. Pro-and anti-tumorigenic functions of the senescence-associated secretory phenotype[J]. Expert opinion on therapeutic targets, 2019, 23(12): 1041-1051.

https://doi.org/10.1080/14728222.2019.1565658

Barajas-Gómez B A, Rosas-Carrasco O, Morales-Rosales S L, et al. Relationship of inflammatory profile of elderly patients serum and senescence-associated secretory phenotype with human breast cancer cells proliferation: Role of IL6/IL8 ratio[J]. Cytokine, 2017, 91: 13-29. https://doi.org/10.1016/j.cyto.2016.12.001

Ovadya Y, Krizhanovsky V. Strategies targeting cellular senescence[J]. The Journal of clinical investigation, 2018, 128(4): 1247-1254. https://doi.org/10.1172/JCI95149

Akonde M, Gupta R D, Dakurah O B, et al. Comorbidity as a predictor of racial and ethnic disparities in cancer in the United States population[J]. Public Health in Practice, 2021, 2: 100175.

https://doi.org/10.1016/j.puhip.2021.100175

van Erning F N, Zanders M M, Kuiper J G, et al. Drug dispensings among elderly in the year before colon cancer diagnosis versus matched cancer‐free controls[J]. Journal of Clinical Pharmacy and Therapeutics, 2016, 41(5): 538-545.

https://doi.org/10.1111/jcpt.12434

Lee L, Cheung W Y, Atkinson E, et al. Impact of comorbidity on chemotherapy use and outcomes in solid tumors: a systematic review[J]. Journal of Clinical Oncology, 2011, 29(1): 106-117.

https://doi.org/10.1200/JCO.2010.31.3049

Carver J R, Shapiro C L, Ng A, et al. American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects[J]. Journal of Clinical Oncology, 2007, 25(25): 3991-4008.

https://doi.org/10.1200/JCO.2007.10.9777

Minamino T, Orimo M, Shimizu I, et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance[J]. Nature medicine, 2009, 15(9): 1082-1087. https://doi.org/10.1038/nm.2014

Renehan A G, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies[J]. The lancet, 2008, 371(9612): 569-578. https://doi.org/10.1016/S0140-6736(08)60269-X

Kim H J, Kim D, Bae S J, et al. 18F-FDG uptake of visceral adipose tissue on preoperative PET/CT as a predictive marker for breast cancer recurrence[J]. Scientific Reports, 2022, 12(1): 21109. https://doi.org/10.1038/s41598-022-25540-4

Del Cornò M, Baldassarre A, Calura E, et al. Transcriptome profiles of human visceral adipocytes in obesity and colorectal cancer unravel the effects of body mass index and polyunsaturated fatty acids on genes and biological processes related to tumorigenesis[J]. Frontiers in immunology, 2019, 10: 265. https://doi.org/10.3389/fimmu.2019.00265

Tait S, Baldassarre A, Masotti A, et al. Integrated transcriptome analysis of human visceral adipocytes unravels dysregulated microRNA-long non-coding RNA-mRNA networks in obesity and colorectal cancer[J]. Frontiers in oncology, 2020, 10: 1089.

https://doi.org/10.3389/fonc.2020.01089

Frasca D, Diaz A, Romero M, et al. Ageing and obesity similarly impair antibody responses[J]. Clinical & Experimental Immunology, 2017, 187(1): 64-70.

https://doi.org/10.1111/cei.12824

Folsom A R, Kaye S A, Sellers T A, et al. Body fat distribution and 5-year risk of death in older women[J]. Jama, 1993, 269(4): 483-487. https://doi.org/10.1001/jama.1993.03500040049035

Guthold R, Stevens G A, Riley L M, et al. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1· 9 million participants[J]. The lancet global health, 2018, 6(10): e1077-e1086.

https://doi.org/10.1016/S2214-109X(18)30357-7

Moore S C, Lee I M, Weiderpass E, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults[J]. JAMA internal medicine, 2016, 176(6): 816-825.

https://doi.org/10.1001/jamainternmed.2016.1548

Simpson R J, Lowder T W, Spielmann G, et al. Exercise and the aging immune system[J]. Ageing research reviews, 2012, 11(3): 404-420. https://doi.org/10.1016/j.arr.2012.03.003

Simpson R J, Pawelec G. Is mechanical loading essential for exercise to preserve the aging immune system? Immun Ageing, 2021. 18(1): 26. https://doi.org/10.1186/s12979-021-00238-9

Ligibel J A, Alfano C M, Courneya K S, et al. American Society of Clinical Oncology position statement on obesity and cancer[J]. Journal of clinical oncology, 2014. 32(31): 3568-3574.

https://doi.org/10.1200/JCO.2014.58.4680

Nieman D C, Wentz L M. The compelling link between physical activity and the body's defense system[J]. Journal of sport and health science, 2019, 8(3): 201-217.

https://doi.org/10.1016/j.jshs.2018.09.009

Clarke S F, Murphy E F, O'Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity[J]. Gut, 2014, 63(12): 1913-1920. http://dx.doi.org/10.1136/gutjnl-2013-306541

Allen J M, Mailing L J, Niemiro G M, et al. Exercise alters gut microbiota composition and function in lean and obese humans[J]. Med Sci Sports Exerc, 2018. 50(4): 747-757.

https://doi.org/10.1249/MSS.0000000000001495

Ghosh T S, Shanahan F, O’Toole P W. The gut microbiome as a modulator of healthy ageing[J]. Nature Reviews Gastroenterology & Hepatology, 2022, 19(9): 565-584.

https://doi.org/10.1038/s41575-022-00605-x

Odamaki, T., Kato, K., Sugahara, H. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol, 2016. 16: 90.

https://doi.org/10.1186/s12866-016-0708-5

Shen, X., Miao, J., Wan, Q. et al. Possible correlation between gut microbiota and immunity among healthy middle-aged and elderly people in southwest China[J]. Gut Pathog, 2018. 10: 4.

https://doi.org/10.1186/s13099-018-0231-3

Vanegas S M, Meydani M, Barnett J B, et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults[J]. The American journal of clinical nutrition, 2017, 105(3): 635-650. https://doi.org/10.3945/ajcn.116.146928

Wastyk H C, Fragiadakis G K, Perelman D, et al. Gut-microbiota-targeted diets modulate human immune status[J]. Cell, 2021, 184(16): 4137-4153. e14. https://doi.org/10.1016/j.cell.2021.06.019

Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy[J]. Science, 2015, 350(6264): 1084-1089.

https://doi.org/10.1126/science.aac4255

Vétizou M, Pitt J M, Daillère R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota[J]. Science, 2015, 350(6264): 1079-1084. https://doi.org/10.1126/science.aad1329

Khan U, Ho K, Hwang E K, et al. Impact of use of antibiotics on response to immune checkpoint inhibitors and tumor microenvironment[J]. American Journal of Clinical Oncology, 2021, 44(6): 247-253. https://doi.org/10.1097/COC.0000000000000813

Heshiki, Y., Vazquez-Uribe, R., Li, J. et al. Predictable modulation of cancer treatment outcomes by the gut microbiota[J]. Microbiome, 2020. 8(1): 28. https://doi.org/10.1186/s40168-020-00811-2

Frankel A E, Coughlin L A, Kim J, et al. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients[J]. Neoplasia, 2017, 19(10): 848-855. https://doi.org/10.1016/j.neo.2017.08.004

Tan J, McKenzie C, Potamitis M, et al. The role of short-chain fatty acids in health and disease[J]. Advances in immunology, 2014, 121: 91-119. https://doi.org/10.1016/B978-0-12-800100-4.00003-9

Wu G D, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes[J]. Science, 2011, 334(6052): 105-108.

https://doi.org/10.1126/science.1208344

Serra-Majem L, Roman-Vinas B, Sanchez-Villegas A, et al. Benefits of the Mediterranean diet: Epidemiological and molecular aspects[J]. Molecular aspects of medicine, 2019, 67: 1-55. https://doi.org/10.1016/j.mam.2019.06.001

Basak S K, Bera A, Yoon A J, et al. A randomized, phase 1, placebo‐controlled trial of APG‐157 in oral cancer demonstrates systemic absorption and an inhibitory effect on cytokines and tumor‐associated microbes[J]. Cancer, 2020, 126(8): 1668-1682.

https://doi.org/10.1002/cncr.32644

Salachan P V, Rasmussen M, Fredsøe J, et al. Microbiota of the prostate tumor environment investigated by whole-transcriptome profiling. Genome Med, 2022. 14(1): 9.

https://doi.org/10.1186/s13073-022-01011-3

Wong-Rolle A, Wei H K, Zhao C, et al. Unexpected guests in the tumor microenvironment: microbiome in cancer[J]. Protein & cell, 2021, 12(5): 426-435.

https://doi.org/10.1007/s13238-020-00813-8

Feng Y, Jaratlerdsiri W, Patrick S M, et al. Metagenomic analysis reveals a rich bacterial content in high‐risk prostate tumors from African men[J]. The Prostate, 2019, 79(15): 1731-1738.

https://doi.org/10.1002/pros.23897

Nejman D, Livyatan I, Fuks G, et al. The human tumor microbiome is composed of tumor type–specific intracellular bacteria[J]. Science, 2020, 368(6494): 973-980.

https://doi.org/10.1126/science.aay9189

Soto-Perez-de-Celis E, Li D, Yuan Y, et al. Functional versus chronological age: geriatric assessments to guide decision making in older patients with cancer[J]. The Lancet Oncology, 2018, 19(6): e305-e316. https://doi.org/10.1016/S1470-2045(18)30348-6

Downloads

Published

2023-05-22