Elderly Lung Cancer Patients show Tumor-Infiltrating CD8+ T Cell Responses Enriched with PDCD1 and CXCL13 after Neoadjuvant Therapy with Anti-PD-1

Authors

  • Fernanda Tereza Bovi Frozza Basic Health Sciences Department, Federal University of Health Sciences of Porto Alegre (UFCSPA), Immunotherapy Laboratory–UFCSPA, R. Sarmento Leite, 245-Centro Histórico, Porto Alegre, 90050-170, Brazil;
  • Gabriel F. Pozo de Mattos P. Experimental Research Service, Hospital de Clínicas de Porto Alegre. Ramiro Barcelos 2350. 90035-903 Porto Alegre / RS-Brazil.
  • Cristina Bonorino Department of Surgery, University of California at San Diego - UCSD, La Jolla, CA, USA.

DOI:

https://doi.org/10.37155/2972-4759-2023-01-01-3

Keywords:

Lung cancer, Aging, Immunosenescence, Neoadjuvant Immunotherapy, anti-PD-1

Abstract

Aged individuals are significantly underrepresented in immunotherapy clinical trials for cancer. Little is known regarding the mechanisms that might regulate their responsiveness to immune checkpoint inhibitors (ICIs). Here, we performed a single-cell analysis on public data of tumor-infiltrating lymphocytes (TILs) in 419,107 cells of 11 elderly and 5 non-elderly non-small cell lung cancer (NSCLC) patients treated with neoadjuvant anti-PD-1, comparing gene expression and molecular patterns associated with positive outcomes and tumor clearance. By reprocessing the dataset of an original study focused on characterizing mutation-associated neoantigen infiltrating T cells in lung cancer patients treated with neoadjuvant immunotherapy, we found that, in a comparison between elderly and non-elderly patients, ICI responsiveness is achieved despite age. T cell immunosenescence can be observed both in aged (≥ 65 years) and younger NSCLC individuals. Both elderly and young individuals produced responses with a heterogeneous molecular program associated with tumor-reactive CD8+ TILs. Specifically, T cells from elderly patients showed an enhanced expression of PDCD1 and CXCL13 (p<0.001) in comparison to younger subjects. Altogether, our findings demonstrate favorable molecular signatures in aged NSCLC individuals following anti-PD-1 treatment and suggest that the recruitment of older adults in immunotherapy clinical trials should not be dismissed solely on the grounds of age.

References

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011,144(5):646-74. https://doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230.

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA: a cancer journal for clinicians. 2019,69(1):7-34. https://doi.org/10.3322/caac.21551 PMID: 30620402.

DeSantis C E, Miller K D, Dale W, et al. Cancer statistics for adults aged 85 years and older, 2019[J]. CA: a cancer journal for clinicians, 2019, 69(6): 452-467. https://doi.org/10.3322/caac.21577.

Vatter F A P, Schapiro D, Chang H, et al. High-dimensional phenotyping identifies age-emergent cells in human mammary epithelia[J]. Cell reports, 2018, 23(4): 1205-1219. https://doi.org/10.1016/j.celrep.2018.03.114.

Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. Immunology. 2007,120(4):435-46. https://doi.org/10.1111/j.1365-2567.2007.02555.x. PMID: 17313487; PMCID: PMC2265901.

Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685-705. https://doi.org/10.1146/annurev-physiol-030212-183653. PMID: 23140366; PMCID: PMC4166529.

Shah Y, Verma A, Marderstein A R, et al. Pan-cancer analysis reveals molecular patterns associated with age[J]. Cell Reports, 2021, 37(10): 110100. https://doi.org/10.1016/j.celrep.2021.110100

Jain V, Hwang W T, Venigalla S, et al. Association of age with efficacy of immunotherapy in metastatic melanoma[J]. The Oncologist, 2020, 25(2): e381-e385. https://doi.org/10.1634/theoncologist.2019-0377. PMID: 32043765; PMCID: PMC7011618.

Wu Q, Wang Q, Tang X, et al. Correlation between patients’ age and cancer immunotherapy efficacy[J]. Oncoimmunology, 2019, 8(4): e1568810. https://doi.org/10.1080/2162402X.2019.1568810. PMID: 30906662; PMCID: PMC6422380.

Perier-Muzet M, Gatt E, Péron J, et al. Association of immunotherapy with overall survival in elderly patients with melanoma[J]. JAMA dermatology, 2018, 154(1): 82-87. https://doi.org/10.1001/jamadermatol.2017.4584. PMID: 29214290; PMCID: PMC5833580.

Kugel III C H, Douglass S M, Webster M R, et al. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations[J]. Clinical Cancer Research, 2018, 24(21): 5347-5356. https://doi.org/10.1158/1078-0432.CCR-18-1116. PMID: 29898988; PMCID: PMC6324578.

Yang F, Akinboro O, Lerro C, et al. Abstract A025: Enrollment of older adults in small cell lung cancer (SCLC) clinical trials compared with population-based US incidence estimates[J]. Cancer Research, 2023, 83(2_Supplement_1): A025-A025. https://doi.org/10.1158/1538-7445.AGCA22-A025

Sedrak M S, Mohile S G, Sun V, et al. Barriers to clinical trial enrollment of older adults with cancer: a qualitative study of the perceptions of community and academic oncologists[J]. Journal of geriatric oncology, 2020, 11(2): 327-334.

https://doi.org/10.1016/j.jgo.2019.07.017. PMID: 31375399; PMCID: PMC6989372.

Denson A C, Mahipal A. Participation of the elderly population in clinical trials: barriers and solutions[J]. Cancer Control, 2014, 21(3): 209-214. https://doi.org/10.1177/107327481402100305. PMID: 24955704.

Wong S K, Nebhan C A, Johnson D B. Impact of patient age on clinical efficacy and toxicity of checkpoint inhibitor therapy[J]. Frontiers in Immunology, 2021: 4831. https://doi.org/10.3389/fimmu.2021.786046

Gomes F, Wong M, Battisti N M L, et al. Immunotherapy in older patients with non-small cell lung cancer: Young International Society of Geriatric Oncology position paper[J]. British Journal of Cancer, 2020, 123(6): 874-884. https://doi.org/10.1038/s41416-020-0986-4

Caushi J X, Zhang J, Ji Z, et al. Transcriptional programs of neoantigen-specific TIL in anti-PD-1-treated lung cancers[J]. Nature, 2021, 596(7870): 126-132. https://doi.org/10.1038/s41586-021-03752-4

Conroy M, Forde P M. Advancing neoadjuvant immunotherapy for lung cancer[J]. Nature Medicine, 2023, 29(3): 533-534. https://doi.org/10.1038/s41591-023-02246-2

IMMUcan SingleCell RNAseq Database. © SIB Swiss Institute of Bioinformatics / Vital-IT 2023. https://immucanscdb.vital-it.ch/

TISCH2. Tumor Immune Single-cell Hub 2, TISCH2 project 2022. http://tisch.comp-genomics.org/

Gayoso A, Lopez R, Xing G, et al. A Python library for probabilistic analysis of single-cell omics data. Nat Biotechnol. 2022;40(2):163-166. https://doi.org/10.1038/s41587-021-01206-w

Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome biology, 2014, 15(12): 1-21. https://doi.org/10.1186/s13059-014-0550-8

Saul D, Kosinsky R L, Atkinson E J, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues[J]. Nature communications, 2022, 13(1): 4827. https://doi.org/10.1038/s41467-022-32552-1

DeTomaso D, Yosef N. Hotspot identifies informative gene modules across modalities of single-cell genomics[J]. Cell systems, 2021, 12(5): 446-456. e9. https://doi.org/10.1016/j.cels.2021.04.005. PMID: 33951459.

Zheng L, Qin S, Si W, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells[J]. Science, 2021, 374(6574): abe6474. https://doi.org/10.1126/science.abe6474. PMID: 34914499.

Liu B, Hu X, Feng K, et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer[J]. Nature Cancer, 2022, 3(1): 108-121. https://doi.org/10.1038/s43018-021-00292-8

Li H, van der Leun A M, Yofe I, et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma[J]. Cell, 2019, 176(4): 775-789. e18. https://doi.org/10.1016/j.cell.2018.11.043.

Duhen T, Duhen R, Montler R, et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors[J]. Nature communications, 2018, 9(1): 2724. https://doi.org/10.1038/s41467-018-05072-0

Liu B, Zhang Y, Wang D, et al. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade[J]. Nature Cancer, 2022, 3(9): 1123-1136. https://doi.org/10.1038/s43018-022-00433-7. PMID: 36138134.

Chen Y P, Zhang Y, Lv J W, et al. Genomic analysis of tumor microenvironment immune types across 14 solid cancer types: immunotherapeutic implications[J]. Theranostics, 2017, 7(14): 3585. https://doi.org/10.7150/thno.21471. PMID: 28912897; PMCID: PMC5596445.

Hellmann M D, Nathanson T, Rizvi H, et al. Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer[J]. Cancer cell, 2018, 33(5): 843-852. e4. https://doi.org/10.1016/j.ccell.2018.03.018. PMID: 29657128; PMCID: PMC5953836.

Rizvi N A, Hellmann M D, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer[J]. Science, 2015, 348(6230): 124-128. https://doi.org/10.1126/science.aaa1348. PMID: 25765070; PMCID: PMC4993154.

Johnson D B, Frampton G M, Rioth M J, et al. Targeted Next Generation Sequencing Identifies Markers of Response to PD-1 BlockadeHybrid Capture–Based NGS and Response to Anti–PD-1[J]. Cancer immunology research, 2016, 4(11): 959-967. https://doi.org/10.1158/2326-6066.CIR-16-0143. PMID: 27671167; PMCID: PMC5134329.

Erbe R, Wang Z, Wu S, et al. Evaluating the impact of age on immune checkpoint therapy biomarkers[J]. Cell reports, 2021, 36(8): 109599. https://doi.org/10.1016/j.celrep.2021.109599.

Pawelec G, Derhovanessian E, Larbi A, et al. Cytomegalovirus and human immunosenescence[J]. Reviews in medical virology, 2009, 19(1): 47-56. https://doi.org/10.1002/rmv.598

Salih Z, Banyard A, Tweedy J, et al. T cell immune awakening in response to immunotherapy is age-dependent[J]. European Journal of Cancer, 2022, 162: 11-21. https://doi.org/10.1016/j.ejca.2021.11.015. PMID: 34952479; PMCID: PMC8829752.

Yost K E, Satpathy A T, Wells D K, et al. Clonal replacement of tumor-specific T cells following PD-1 blockade[J]. Nature medicine, 2019, 25(8): 1251-1259. https://doi.org/10.1038/s41591-019-0522-3

Zhang Y, Chen H, Mo H, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer[J]. Cancer Cell, 2021, 39(12): 1578-1593. e8. https://doi.org/10.1016/j.ccell.2021.09.010.

Downloads

Published

2023-06-26

Issue

Section

Original Research Article