Protocol for a Pilot Trial to Implement Diagnostics for Clonal Hematopoiesis of Indeterminate Potential into Routine Clinical Care of Older Patients with Breast Cancer

Authors

  • Nina Rosa Neuendorff University Hospital Essen
  • Ann-Kathrin Bittner Department for Gynaecology and Obstetrics, Breast Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45147 Essen
  • Sara Flossdorf Institute for Medical Informatics, Biometry, and Epidemiology (IMIBE), University Hospital Essen, University of Duisburg-Essen, Zweigertstr. 37, D-45130 Essen
  • Tessy Mauer Department for Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45147 Essen
  • Florian Schmitz Department of Psychology, University of Duisburg-Essen, Universitätsstraße 2, D-45141 Essen
  • Nils von Neuhoff Clinic for Pediatrics III, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45147 Essen
  • Johannes Köster Institute of Human Genetics, University of Duisburg-Essen, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen
  • Felix Mölder Institute of Human Genetics, University of Duisburg-Essen, University of Duisburg-Essen, Hufelandstraße 55, D-45147 Essen
  • Amin T Turki Department for Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45147 Essen
  • Rainer Kimmig Department for Gynaecology and Obstetrics, Breast Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45147 Essen
  • Hans Christian Reinhardt Department for Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45147 Essen
  • Oliver Hoffmann Department for Gynaecology and Obstetrics, Breast Cancer Center, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45147 Essen
  • Bastian von Tresckow Department for Hematology and Stem Cell Transplantation, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45147 Essen

DOI:

https://doi.org/10.37155/2972-4759-2023-01-01-4

Keywords:

clonal haematopoiesis of indeterminate potential (CHIP), breast cancer, older adults, cardiovascular risk factors, survivorship

Abstract

Clonal hematopoiesis of indeterminate potential (CHIP) refers to the presence of a hematopoietic clone with a common leukemia driver mutation without diagnosis of an underlying hematopoietic disease. The prevalence of CHIP is increasing with age and is associated with pro-inflammatory states, higher risk of cardiovascular diseases (CVD) and therapy-induced leukemia. However, these CHIP-associated risks overlap with treatment-related toxicities of breast cancer therapy, which potentially supports the integration of CHIP into treatment- and survivorship plans. However, so far no data on the feasibility and acceptance of a CHIP-based aftercare are available.

In this pilot trial, the feasibility to integrate pre-treatment CHIP diagnostics into the routine care of breast cancer patients is evaluated. Early-stage breast cancer is common among older women and has an excellent long-term outcome. Thus, 80-100 patients with limited stage breast cancer aged ≥ 60 years without known hematological disease will be included. CHIP is assessed by targeted next generation sequencing from peripheral blood samples. The primary outcome measures the estimation of willingness to participate. Secondary outcome measures include evaluation of patient acceptance of the study process, potential fears in relation to CHIP-positivity, and cardiovascular risk profile of CHIP-positive versus CHIP-negative patients.  

In case this study meets its primary endpoint, the results are used to design a larger cohort study that integrates an intensified CHIP-tailored survivorship program, in order to minimize late treatment-related toxicities and improve long-term outcomes of older breast-cancer patients.

References

Koch-Institut, R. and G.d.e.K.i.D. e.V., Krebs in Deutschland 2015/2016. 2019.

Janssen-Heijnen M L G, van Steenbergen L N, Voogd A C, et al. Small but significant excess mortality compared with the general population for long-term survivors of breast cancer in the Netherlands[J]. Annals of oncology, 2014, 25(1): 64-68.

https://doi.org/10.1093/annonc/mdt424

Steensma D P, Bejar R, Jaiswal S, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes[J]. Blood, The Journal of the American Society of Hematology, 2015, 126(1): 9-16.

https://doi.org/10.1182/blood-2015-03-631747

Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes[J]. New England Journal of Medicine, 2014, 371(26): 2488-2498.

https://doi.org/10.1056/NEJMoa1408617

Zink F, Stacey S N, Norddahl G L, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly[J]. Blood, The Journal of the American Society of Hematology, 2017, 130(6): 742-752.

https://doi.org/10.1182/blood-2017-02-769869

Coombs C C, Zehir A, Devlin S M, et al. Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes[J]. Cell stem cell, 2017, 21(3): 374-382. e4.

https://doi.org/10.1016/j.stem.2017.07.010

Gillis N K, Ball M, Zhang Q, et al. Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study[J]. The lancet oncology, 2017, 18(1): 112-121.

https://doi.org/10.1016/S1470-2045(16)30627-1

Takahashi K, Wang F, Kantarjian H, et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study[J]. The lancet oncology, 2017, 18(1): 100-111.

https://doi.org/10.1016/S1470-2045 (16)30626-X

Bolton K L, Ptashkin R N, Gao T, et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis[J]. Nature genetics, 2020, 52(11): 1219-1226.

https://doi.org/10.1038/s41588-020-00710-0

Jaiswal S, Natarajan P, Silver A J, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease[J]. New England Journal of Medicine, 2017, 377(2): 111-121.

https://doi.org/10.1056/NEJMoa1701719

Khoury J D, Solary E, Abla O, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms[J]. Leukemia, 2022, 36(7): 1703-1719.

https://doi.org/10.1038/s41375-022-01613-1

Young A L, Challen G A, Birmann B M, et al. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults[J]. Nature communications, 2016, 7(1): 12484.

https://doi.org/10.1038/ncomms12484

Desai P, Mencia-Trinchant N, Savenkov O, et al. Somatic mutations precede acute myeloid leukemia years before diagnosis[J]. Nature medicine, 2018, 24(7): 1015-1023.

https://doi.org/10.1038/s41591-018-0081-z

Husby S, Favero F, Nielsen C, et al. Clinical impact of clonal hematopoiesis in patients with lymphoma undergoing ASCT: a national population-based cohort study[J]. Leukemia, 2020, 34(12): 3256-3268.

https://doi.org/10.1038/s41375-020-0795-z

Abelson S, Collord G, Ng S W K, et al. Prediction of acute myeloid leukaemia risk in healthy individuals[J]. Nature, 2018, 559(7714): 400-404.

https://doi.org/10.1038/s41586-018-0317-6

Spencer Chapman M, Ranzoni A M, Myers B, et al. Lineage tracing of human development through somatic mutations[J]. Nature, 2021, 595(7865): 85-90.

https://doi.org/10.1038/s41586-021-03548-6

Mayerhofer C, Sedrak M S, Hopkins J O, et al. Clonal hematopoiesis in older patients with breast cancer receiving chemotherapy[J]. JNCI: Journal of the National Cancer Institute, 2023: djad065.

https://doi.org/10.1093/jnci/djad065

Fuster J J, MacLauchlan S, Zuriaga M A, et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice[J]. Science, 2017, 355(6327): 842-847.

https://doi.org/10.1126/science.aag1381

Cull A H, Snetsinger B, Buckstein R, et al. Tet2 restrains inflammatory gene expression in macrophages[J]. Experimental hematology, 2017, 55: 56-70. e13.

https://doi.org/10.1016/j.exphem.2017.08.001

Zhang Q, Zhao K, Shen Q, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6[J]. Nature, 2015, 525(7569): 389-393.

https://doi.org/10.1038/nature15252

Cook E K, Izukawa T, Young S, et al. Comorbid and inflammatory characteristics of genetic subtypes of clonal hematopoiesis[J]. Blood advances, 2019, 3(16): 2482-2486.

https://doi.org/10.1182/bloodadvances.2018024729

Busque L, Sun M, Buscarlet M, et al. High-sensitivity C-reactive protein is associated with clonal hematopoiesis of indeterminate potential[J]. Blood Advances, 2020, 4(11): 2430-2438.

https://doi.org/10.1182/bloodadvances.2019000770

Cook E K, Izukawa T, Young S, et al. Comorbid and inflammatory characteristics of genetic subtypes of clonal hematopoiesis[J]. Blood advances, 2019, 3(16): 2482-2486.

https://doi.org/10.1182/bloodadvances.2018024729

Wang S, Hu S, Luo X, et al. Prevalence and prognostic significance of DNMT3A-and TET2-clonal haematopoiesis-driver mutations in patients presenting with ST-segment elevation myocardial infarction[J]. EBioMedicine, 2022, 78.

https://doi.org/10.1016/j.ebiom.2022.103964

Miller P G, Qiao D, Rojas-Quintero J, et al. Association of clonal hematopoiesis with chronic obstructive pulmonary disease[J]. Blood, The Journal of the American Society of Hematology, 2022, 139(3): 357-368.

https://doi.org/10.1182/blood.2021013531

Kuhnert S, Mansouri S, Rieger M A, et al. Association of clonal hematopoiesis of indeterminate potential with inflammatory gene expression in patients with COPD[J]. Cells, 2022, 11(13): 2121.

https://doi.org/10.3390/cells11132121

Wong, W.J., et al., Clonal hematopoiesis and risk of chronic liver disease. medRxiv, 2022: p. 2022.01.17.22269409.

Hecker J S, Hartmann L, Rivière J, et al. CHIP and hips: clonal hematopoiesis is common in patients undergoing hip arthroplasty and is associated with autoimmune disease[J]. Blood, The Journal of the American Society of Hematology, 2021, 138(18): 1727-1732.

https://doi.org/10.1182/blood.2020010163

Bolton K L, Koh Y, Foote M B, et al. Clonal hematopoiesis is associated with risk of severe Covid-19[J]. Nature communications, 2021, 12(1): 5975.

https://doi.org/10.1038/s41467-021-26138-6

Weber-Lassalle K, Ernst C, Reuss A, et al. Clonal hematopoiesis–associated gene mutations in a clinical cohort of 448 patients with ovarian cancer[J]. JNCI: Journal of the National Cancer Institute, 2022, 114(4): 565-570.

https://doi.org/10.1093/jnci/djab231

Coffee B, Cox H C, Kidd J, et al. Detection of somatic variants in peripheral blood lymphocytes using a next generation sequencing multigene pan cancer panel[J]. Cancer Genetics, 2017, 211: 5-8.

https://doi.org/10.1016/j.cancergen.2017.01.002

Chang C M, Lin K C, Hsiao N E, et al. Clinical application of liquid biopsy in cancer patients[J]. BMC cancer, 2022, 22(1): 413.

https://doi.org/10.1186/s12885-022-09525-0

Sun M Y, Lin F Q, Chen L J, et al. Targeted next-generation sequencing of circulating tumor DNA mutations among metastatic breast cancer patients[J]. Current Oncology, 2021, 28(4): 2326-2336.

https://doi.org/10.3390/curroncol28040214

Severson E A, Riedlinger G M, Connelly C F, et al. Detection of clonal hematopoiesis of indeterminate potential in clinical sequencing of solid tumor specimens[J]. Blood, The Journal of the American Society of Hematology, 2018, 131(22): 2501-2505.

https://doi.org/10.1182/blood-2018-03-840629

Feng Y, Newsome R, Robinson T, et al. Dnmt3a mutations in the hematopoietic system promote colitis-associated colon cancer: A model of clonal hematopoiesis in solid tumors[J]. Blood, 2021, 138: 2161.

https://doi.org/10.1182/blood-2021-149740

Zhao P, Xia N, Zhang H, et al. The metabolic syndrome is a risk factor for breast cancer: a systematic review and meta-analysis[J]. Obesity facts, 2020, 13(4): 384-396.

https://doi.org/10.1159/000507554

Dong S, Wang Z, Shen K, et al. Metabolic syndrome and breast cancer: prevalence, treatment response, and prognosis[J]. Frontiers in oncology, 2021, 11: 629666.

https://doi.org/10.3389/fonc.2021.629666

Fuster J J, Zuriaga M A, Zorita V, et al. TET2-loss-of-function-driven clonal hematopoiesis exacerbates experimental insulin resistance in aging and obesity[J]. Cell reports, 2020, 33(4).

https://doi.org/10.1016/j.celrep.2020.108326

Ortmann C A, Dorsheimer L, Abou-El-Ardat K, et al. Functional dominance of CHIP-mutated hematopoietic stem cells in patients undergoing autologous transplantation[J]. Cell reports, 2019, 27(7): 2022-2028. e3.

https://doi.org/10.1016/j.celrep.2019.04.064

Wolff A C, Blackford A L, Visvanathan K, et al. Risk of marrow neoplasms after adjuvant breast cancer therapy: the national comprehensive cancer network experience[J]. Journal of clinical oncology, 2015, 33(4): 340.

https://doi.org/10.1200/JCO.2013.54.6119

Kida M, Usuki K, Uchida N, et al. Outcome and risk factors for therapy-related myeloid neoplasms treated with allogeneic stem cell transplantation in Japan[J]. Biology of Blood and Marrow Transplantation, 2020, 26(8): 1543-1551.

https://doi.org/10.1016/j.bbmt.2020.04.004

Zekavat S M, Viana-Huete V, Jorshery S D, et al. TP53-mediated clonal hematopoiesis confers increased risk for incident peripheral artery disease[J]. medRxiv, 2021: 2021.08. 22.21262430.

https://doi.org/10.1101/2021.08.22.21262430

Bhattacharya R, Zekavat S M, Haessler J, et al. Clonal hematopoiesis is associated with higher risk of stroke[J]. Stroke, 2022, 53(3): 788-797.

https://doi.org/10.1161/STROKEAHA.121.037388

Arends C M, Liman T G, Strzelecka P M, et al. Associations of clonal hematopoiesis with recurrent vascular events and death in patients with incident ischemic stroke[J]. Blood, The Journal of the American Society of Hematology, 2023, 141(7): 787-799.

https://doi.org/10.1182/blood.2022017661

Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond[J]. Journal of the American College of Cardiology, 2017, 70(18): 2278-2289.

https://doi.org/10.1016/j.jacc.2017.09.028

Svensson E C, Madar A, Campbell C D, et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial[J]. JAMA cardiology, 2022, 7(5): 521-528.

https://doi.org/10.1001/jamacardio.2022.0386

Heyde A, Rohde D, McAlpine C S, et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis[J]. Cell, 2021, 184(5): 1348-1361. e22.

https://doi.org/10.1016/j.cell.2021.01.049

Yu B, Roberts M B, Raffield L M, et al. Association of clonal hematopoiesis with incident heart failure[J]. Journal of the American College of Cardiology, 2021, 78(1): 42-52.

https://doi.org/10.1016/j.jacc.2021.04.085

Pascual-Figal D A, Bayes-Genis A, Díez-Díez M, et al. Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction[J]. Journal of the American College of Cardiology, 2021, 77(14): 1747-1759.

https://doi.org/10.1016/j.jacc.2021.02.028

Sano S, Oshima K, Wang Y, et al. Tet2-mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome[J]. Journal of the American College of Cardiology, 2018, 71(8): 875-886.

https://doi.org/10.1016/j.jacc.2017.12.037

Sano S, Wang Y, Yura Y, et al. JAK2 V617F-mediated clonal hematopoiesis accelerates pathological remodeling in murine heart failure[J]. Basic to Translational Science, 2019, 4(6): 684-697.

https://doi.org/10.1016/j.jacbts.2019.05.013

Lanza O, Ferrera A, Reale S, et al. New insights on the toxicity on heart and vessels of breast cancer therapies[J]. Medical Sciences, 2022, 10(2): 27.

https://doi.org/10.3390/medsci10020027

Zhang M, Yang H, Xu C, et al. Risk factors for anthracycline-induced cardiotoxicity in breast cancer treatment: a meta-analysis[J]. Frontiers in Oncology, 2022, 12: 899782.

https://doi.org/10.3389/fonc.2022.899782

Mitchell J D, Cehic D A, Morgia M, et al. Cardiovascular manifestations from therapeutic radiation: a multidisciplinary expert consensus statement from the International Cardio-Oncology Society[J]. Cardio Oncology, 2021, 3(3): 360-380.

https://doi.org/10.1016/j.jaccao.2021.06.003

Szczepaniak P, Siedlinski M, Hodorowicz-Zaniewska D, et al. Breast cancer chemotherapy induces vascular dysfunction and hypertension through a NOX4-dependent mechanism[J]. The Journal of Clinical Investigation, 2022, 132(13).

https://doi.org/10.1172/JCI149117

Kwan M L, Cheng R K, Iribarren C, et al. Risk of cardiometabolic risk factors in women with and without a history of breast cancer: the pathways heart study[J]. Journal of Clinical Oncology, 2022, 40(15): 1635-1646.

https://doi.org/10.1200/JCO.21.01738

Luca N M, Welch C A, Sweeting M, et al. Prevalence of Cardiovascular Disease in Patients With Potentially Curable Malignancies[J]. JACC: CardioOncology, 2022, 4(2): 238.

https://doi.org/10.1016/j.jaccao.2022.03.004

Hatakeyama K, Hieda M, Semba Y, et al. TET2 clonal hematopoiesis is associated with anthracycline-induced cardiotoxicity in patients with lymphoma[J]. Cardio Oncology, 2022, 4(1): 141-143.

https://doi.org/10.1016/j.jaccao.2022.01.098

Calvillo-Argüelles O, Schoffel A, Capo-Chichi J M, et al. Cardiovascular disease among patients with AML and CHIP-related mutations[J]. Cardio Oncology, 2022, 4(1): 38-49.

https://doi.org/10.1016/j.jaccao.2021.11.008

Sano S, Wang Y, Ogawa H, et al. TP53-mediated therapy-related clonal hematopoiesis contributes to doxorubicin-induced cardiomyopathy by augmenting a neutrophil-mediated cytotoxic response[J]. JCI insight, 2021, 6(13).

https://doi.org/10.1172/jci.insight.146076

Afifi A M, Saad A M, Al‐Husseini M J, et al. Causes of death after breast cancer diagnosis: A US population‐based analysis[J]. Cancer, 2020, 126(7): 1559-1567.

https://doi.org/10.1002/cncr.32648

Bradshaw P T, Stevens J, Khankari N, et al. Cardiovascular disease mortality among breast cancer survivors[J]. Epidemiology (Cambridge, Mass.), 2016, 27(1): 6.

https://doi.org/10.1097/EDE.0000000000000394

Patnaik J L, Byers T, DiGuiseppi C, et al. Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer: a retrospective cohort study[J]. Breast Cancer Research, 2011, 13(3): 1-9.

https://doi.org/10.1186/bcr2901

Ramin C, Schaeffer M L, Zheng Z, et al. All-cause and cardiovascular disease mortality among breast cancer survivors in CLUE II, a long-standing community-based cohort[J]. JNCI: Journal of the National Cancer Institute, 2021, 113(2): 137-145.

https://doi.org/10.1093/jnci/djaa096

Zhang X, Pawlikowski M, Olivo-Marston S, et al. Ten-year cardiovascular risk among cancer survivors: the National Health and Nutrition Examination Survey[J]. PloS one, 2021, 16(3): e0247919.

https://doi.org/10.1371/journal.pone.0247919

Strongman H, Gadd S, Matthews A A, et al. Does cardiovascular mortality overtake cancer mortality during cancer survivorship? An English retrospective cohort study[J]. Cardio Oncology, 2022, 4(1): 113-123.

https://doi.org/10.1016/j.jaccao.2022.01.102

Armenian S H, Xu L, Ky B, et al. Cardiovascular disease among survivors of adult-onset cancer: a community-based retrospective cohort study[J]. Journal of Clinical Oncology, 2016, 34(10): 1122.

https://doi.org/10.1200/JCO.2015.64.0409

Chow E J, Chen Y, Hudson M M, et al. Prediction of ischemic heart disease and stroke in survivors of childhood cancer[J]. Journal of Clinical Oncology, 2018, 36(1): 44.

https://doi.org/10.1200/JCO.2017.74.8673

Law W, Johnson C, Rushton M, et al. The Framingham risk score underestimates the risk of cardiovascular events in the HER2-positive breast cancer population[J]. Current Oncology, 2017, 24(5): 348-353.

https://doi.org/10.3747/co.24.3684

Fredslund S O, Gravholt C H, Laursen B E, et al. Key metabolic parameters change significantly in early breast cancer survivors: an explorative PILOT study [J]. Transl. Med. 2019; 17 (1): 105[J].

https://doi.org/10.1186/s12967-019-1850-2

Oliveri S, Ferrari F, Manfrinati A, et al. A systematic review of the psychological implications of genetic testing: a comparative analysis among cardiovascular, neurodegenerative and cancer diseases[J]. Frontiers in genetics, 2018, 9: 624.

https://doi.org/10.3389/fgene.2018.00624

Chavarri-Guerra Y, Slavin T P, Longoria-Lozano O, et al. Genetic cancer predisposition syndromes among older adults[J]. Journal of geriatric oncology, 2020, 11(7): 1054-1060.

https://doi.org/10.1016/j.jgo.2020.01.001

Sella T, Fell G G, Miller P G, et al. Patient perspectives on testing for clonal hematopoiesis of indeterminate potential[J]. Blood Advances, 2022, 6(24): 6151-6161.

https://doi.org/10.1182/bloodadvances.2022008376

Neuendorff N R, Frenzel L P, Leuschner F, et al. Integrating clonal haematopoiesis into geriatric oncology: The ARCH between aging, cardiovascular disease and malignancy[J]. Journal of Geriatric Oncology, 2021, 12(3): 479-482.

https://doi.org/10.1016/j.jgo.2020.09.006

FOSSA S D. Quality-of-life assessment in unselected oncologic out-patients-a pilot-study[J]. International journal of oncology, 1994, 4(6): 1393-1397.

https://doi.org/10.3892/ijo.4.6.1393

SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe[J]. European heart journal, 2021, 42(25): 2439-2454.

https: //doi.org/10.1093/eurheartj/ehab309

Mölder F, Jablonski K P, Letcher B, et al. Sustainable data analysis with Snakemake[J]. F1000Research, 2021, 10.

https://doi.org/10.12688/f1000research.29032.2

Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM[J]. arXiv preprint arXiv:1303.3997, 2013.

https://doi.org/10.48550/arXiv.1303.3997

DePristo M A, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data[J]. Nature genetics, 2011, 43(5): 491-498.

https://doi.org/10.1038/ng.806

Köster J, Dijkstra L J, Marschall T, et al. Varlociraptor: enhancing sensitivity and controlling false discovery rate in somatic indel discovery[J]. Genome biology, 2020, 21(1): 1-25.

https://doi.org/10.1186/s13059-020-01993-6

McLaren W, Gil L, Hunt S E, et al. The ensembl variant effect predictor[J]. Genome biology, 2016, 17(1): 1-14.

https://doi.org/10.1186/s13059-016-0974-4

Hartmann T, Schröder C, Kuthe E, et al. Insane in the vembrane: filtering and transforming VCF/BCF files[J]. Bioinformatics, 2023, 39(1): btac810.

https://doi.org/10.1093/bioinformatics/btac810

Aaronson N K, Ahmedzai S, Bergman B, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology[J]. JNCI: Journal of the National Cancer Institute, 1993, 85(5): 365-376.

https://doi.org/10.1093/jnci/85.5.365

Sprangers M A, Groenvold M, Arraras J I, et al. The European Organization for Research and Treatment of Cancer breast cancer-specific quality-of-life questionnaire module: first results from a three-country field study[J]. Journal of clinical oncology, 1996, 14(10): 2756-2768.

Cheng K K F, Lim E Y T, Kanesvaran R. Quality of life of elderly patients with solid tumours undergoing adjuvant cancer therapy: a systematic review[J]. BMJ open, 2018, 8(1): e018101.

http://dx.doi.org/10.1136/bmjopen-2017-018101

Snyder C F, Frick K D, Kantsiper M E, et al. Prevention, screening, and surveillance care for breast cancer survivors compared with controls: changes from 1998 to 2002[J]. Journal of Clinical Oncology, 2009, 27(7): 1054.

https://doi.org/10.1200/JCO.2008.18.0950

Durand M, Lacaria K, Sidsworth M, et al. Management of cardiovascular health in acute leukemia: a national survey[J]. Leukemia & Lymphoma, 2019, 60(12): 2982-2992.

https://doi.org/10.1080/10428194.2019.1613539

Enright K A, Krzyzanowska M K. Control of cardiovascular risk factors among adult cancer survivors: a population-based survey[J]. Cancer Causes & Control, 2010, 21: 1867-1874.

https://doi.org/10.1007/s10552-010-9614-6

Cheung W Y, Neville B A, Cameron D B, et al. Comparisons of patient and physician expectations for cancer survivorship care[J]. Journal of Clinical Oncology, 2009, 27(15): 2489-2495.

https://doi.org/10.1200/JCO.2008.20.3232

Thotamgari S R, Sheth A R, Grewal U S. Racial Disparities in Cardiovascular Disease Among Patients with Cancer in the United States: The Elephant in the Room[J]. EClinicalMedicine, 2022, 44.

https://doi.org/10.1016/j.eclinm.2022.101297

Downloads

Published

2023-08-17

Issue

Section

Original Research Article