Ageing and its Role in Modulating Healthy and Tumour -Associated Macrophages

Authors

DOI:

https://doi.org/10.37155/2972-4759-2024-02-01-1

Keywords:

Ageing, Cancer, Macrophages, Tumour-associated macrophages, Endothelial cells, Immunosenescence

Abstract

Western and third world countries alike are experiencing population ageing with people living longer. The World Health Organization website states that ‘between 2015 and 2050, the proportion of the world's population over 60 years will nearly double from 12% to 22% reaching 2.1 billion’, and that ‘the number of persons aged 80 years or older is expected to triple between 2020 and 2050 to reach 426 million’. However, the elderly (i.e., those aged over 65 years) are 11 times more likely to develop cancer than younger people; this is illustrated by GLOBOCAN 2020 data showing that greater than 50% of people who had cancer were 65 or older in 2018. This age-related cancer emergence may in part be due to increasing dysregulation of the immune system or “immunosenescence”. Macrophages are pivotal immune cells in maintaining homeostasis and in regulating inflammatory responses during immunological insults, such as cancer, where they can perform anti-tumourigenic functions. Yet, tumour-associated macrophages are well known for their ability to promote tumour growth, with numbers often correlating to cancer progression and poorer outcomes. Macrophages contribute to this by secreting growth and angiogenic factors, and they closely interact with endothelial cells and cancer cells to help shape the tumour microenvironment. During ageing, macrophage response to environmental stimuli becomes dysregulated including impaired anti-tumour functions. Furthermore, increased number of macrophages and precursor cells are observed in lymphoid organs that can supply to tumours with ageing. Such age-related changes, including those to endothelial cells, may promote cancer development and lead to poorer cancer outcomes in elderly people. In this review, we discuss recent findings concerning how macrophages are modulated during healthy ageing and in cancer, with a focus on macrophage and endothelial cell interactions.

References

World Health Organization. Ageing and health. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health, accessed: 22/01/2024

Ferlay J, Ervik M, Lam F, et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer, 2020. Available from: https://gco.iarc.fr/today, accessed: 22/01/2024

Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci[J]. 2000; 908: 244-254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x

Fulop T, Kotb R, Fortin C F, et al. Potential role of immunosenescence in cancer development. Annals of the New York Academy of Sciences[J]. 2010; 1197(1): 158-165. https://doi.org/10.1111/j.1749-6632.2009.05370.x

Franceschi C, Garagnani P, Parini P, et al. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. Nature Reviews Endocrinology[J]. 2018; 14(10): 576-590. https://doi.org/10.1038/s41574-018-0059-4

Niu X-H, Xie Y-P, Yang S, et al. IL-18/IL-18R1 promotes circulating fibrocyte differentiation in the aging population. Inflammation Research[J]. 2020; 69(5): 497-507. https://doi.org/10.1007/s00011-020-01330-4

Álvarez-Rodríguez L, López-Hoyos M, Muñoz-Cacho P, et al. Aging is associated with circulating cytokine dysregulation. Cellular Immunology[J]. 2012; 273(2): 124-132. https://doi.org/10.1016/j.cellimm.2012.01.001

Parker D, Sloane R, Pieper C F, et al. Age-Related Adverse Inflammatory and Metabolic Changes Begin Early in Adulthood. The Journals of Gerontology: Series A[J]. 2019; 74(3): 283-289.

https://doi.org/10.1093/gerona/gly121

Wei J, Xu H, Davies J L, et al. Increase of plasma IL-6 concentration with age in healthy subjects. Life Sciences[J]. 1992; 51(25): 1953-1956.

https://doi.org/10.1016/0024-3205(92)90112-3

Hager K, Machein U, Krieger S, et al. Interleukin-6 and selected plasma proteins in healthy persons of different ages. Neurobiology of Aging[J]. 1994; 15(6): 771-772. https://doi.org/10.1016/0197-4580(94)90066-3

Ferrucci L, Corsi A, Lauretani F, et al. The origins of age-related proinflammatory state. Blood[J]. 2005; 105(6): 2294-2299.

https://doi.org/10.1182/blood-2004-07-2599

Valiathan R, Ashman M, Asthana D. Effects of Ageing on the Immune System: Infants to Elderly. Scandinavian Journal of Immunology[J]. 2016; 83(4): 255-266. https://doi.org/10.1111/sji.12413

Morrisette-Thomas V, Cohen A A, Fülöp T, et al. Inflamm-aging does not simply reflect increases in pro-inflammatory markers. Mech Ageing Dev[J]. 2014; 139: 49-57. https://doi.org/10.1016/j.mad.2014.06.005

Stowe R P, Peek M K, Cutchin M P, et al. Plasma Cytokine Levels in a Population-Based Study: Relation to Age and Ethnicity. The Journals of Gerontology: Series A[J]. 2010; 65A(4): 429-433.

https://doi.org/10.1093/gerona/glp198

Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci[J]. 2014; 69 Suppl 1: S4-9.

https://doi.org/10.1093/gerona/glu057

Bruunsgaard H, Skinhøj P, Pedersen A N, et al. Ageing, tumour necrosis factor-alpha (TNF-alpha) and atherosclerosis. Clin Exp Immunol[J]. 2000; 121(2): 255-260. https://doi.org/10.1046%2Fj.1365-2249.2000.01281.x

Davizon-Castillo P, McMahon B, Aguila S, et al. TNF-α–driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood[J]. 2019; 134(9): 727-740.

https://doi.org/10.1182/blood.2019000200

Carrieri G, Marzi E, Olivieri F, et al. The G/C915 polymorphism of transforming growth factor β1 is associated with human longevity: a study in Italian centenarians. Aging Cell[J]. 2004; 3(6): 443-448.

https://doi.org/10.1111/j.1474-9728.2004.00129.x

Forsey R J, Thompson J M, Ernerudh J, et al. Plasma cytokine profiles in elderly humans. Mechanisms of Ageing and Development[J]. 2003; 124(4): 487-493. https://doi.org/10.1016/S0047-6374(03)00025-3

Fagnoni F F, Vescovini R, Passeri G, et al. Shortage of circulating naive CD8+ T cells provides new insights on immunodeficiency in aging. Blood[J]. 2000; 95(9): 2860-2868. https://doi.org/10.1182/blood.V95.9.2860.009k35_2860_2868

Li M, Yao D, Zeng X, et al. Age related human T cell subset evolution and senescence. Immunity & Ageing[J]. 2019; 16(1): 24.

https://doi.org/10.1186/s12979-019-0165-8

Czesnikiewicz-Guzik M, Lee W-W, Cui D, et al. T cell subset-specific susceptibility to aging. Clinical Immunology[J]. 2008; 127(1): 107-118. https://doi.org/10.1016/j.clim.2007.12.002

Quinn K M, Fox A, Harland K L, et al. Age-Related Decline in Primary CD8+ T Cell Responses Is Associated with the Development of Senescence in Virtual Memory CD8+ T Cells. Cell Reports[J]. 2018; 23(12): 3512-3524.

https://doi.org/10.1016/j.celrep.2018.05.057

Bulati M, Buffa S, Candore G, et al. B cells and immunosenescence: A focus on IgG+IgD−CD27− (DN) B cells in aged humans. Ageing Research Reviews[J]. 2011; 10(2): 274-284.

https://doi.org/10.1016/j.arr.2010.12.002

Chong Y, Ikematsu H, Yamaji K, et al. CD27+ (memory) B cell decrease and apoptosis-resistant CD27− (naive) B cell increase in aged humans: implications for age-related peripheral B cell developmental disturbances. International Immunology[J]. 2005; 17(4): 383-390.

https://doi.org/10.1093/intimm/dxh218

Gibson K L, Wu Y-C, Barnett Y, et al. B-cell diversity decreases in old age and is correlated with poor health status. Aging Cell[J]. 2009; 8(1): 18-25. https://doi.org/10.1111/j.1474-9726.2008.00443.x

Smallwood H S, López-Ferrer D, Squier T C. Aging enhances the production of reactive oxygen species and bactericidal activity in peritoneal macrophages by upregulating classical activation pathways. Biochemistry[J]. 2011; 50(45): 9911-9922. https://doi.org/10.1021/bi2011866

Barman P K, Shin J E, Lewis S A, et al. Production of MHCII-expressing classical monocytes increases during aging in mice and humans. Aging Cell[J]. 2022; 21(10): e13701. https://doi.org/10.1111/acel.13701

Hearps A C, Martin G E, Angelovich T A, et al. Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell[J]. 2012; 11(5): 867-875.

https://doi.org/10.1111/j.1474-9726.2012.00851.x

Bouchlaka M N, Sckisel G D, Chen M, et al. Aging predisposes to acute inflammatory induced pathology after tumor immunotherapy. Journal of Experimental Medicine[J]. 2013; 210(11): 2223-2237.

https://doi.org/10.1084/jem.20131219

Thevaranjan N, Puchta A, Schulz C, et al. Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic Inflammation, and Macrophage Dysfunction. Cell Host & Microbe[J]. 2017; 21(4): 455-466.e454.

https://doi.org/10.1016/j.chom.2017.03.002

Boyd A R, Shivshankar P, Jiang S, et al. Age-related defects in TLR2 signaling diminish the cytokine response by alveolar macrophages during murine pneumococcal pneumonia. Experimental Gerontology[J]. 2012; 47(7): 507-518. https://doi.org/10.1016/j.exger.2012.04.004

Wynn T A, Chawla A, Pollard J W. Macrophage biology in development, homeostasis and disease. Nature[J]. 2013; 496(7446): 445-455.

https://doi.org/10.1038/nature12034

Davies L C, Jenkins S J, Allen J E, et al. Tissue-resident macrophages. Nature Immunology[J]. 2013; 14(10): 986-995.

https://doi.org/10.1038/ni.2705

Gibbings S L, Thomas S M, Atif S M, et al. Three Unique Interstitial Macrophages in the Murine Lung at Steady State. American Journal of Respiratory Cell and Molecular Biology[J]. 2017; 57(1): 66-76.

https://doi.org/10.1165/rcmb.2016-0361OC

Nagelkerke S Q, Bruggeman C W, den Haan J M M, et al. Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fc-γ receptors. Blood Advances[J]. 2018; 2(8): 941-953.

https://doi.org/10.1182/bloodadvances.2017015008

Mass E, Nimmerjahn F, Kierdorf K, et al. Tissue-specific macrophages: how they develop and choreograph tissue biology. Nature Reviews Immunology[J]. 2023: https://doi.org/10.1038/s41577-023-00848-y

Cortez-Retamozo V, Etzrodt M, Newton A, et al. Origins of tumor-associated macrophages and neutrophils. Proceedings of the National Academy of Sciences[J]. 2012; 109(7): 2491-2496.

https://doi.org/10.1073/pnas.1113744109

Cortez-Retamozo V, Etzrodt M, Newton A, et al. Angiotensin II drives the production of tumor-promoting macrophages. Immunity[J]. 2013; 38(2): 296-308. https://doi.org/10.1016/j.immuni.2012.10.015

Swirski F K, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science[J]. 2009; 325(5940): 612-616. https://doi.org/10.1126/science.1175202

Merad M, Manz M G, Karsunky H, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nature Immunology[J]. 2002; 3(12): 1135-1141. https://doi.org/10.1038/ni852

Hashimoto D, Chow A, Noizat C, et al. Tissue-Resident Macrophages Self-Maintain Locally throughout Adult Life with Minimal Contribution from Circulating Monocytes. Immunity[J]. 2013; 38(4): 792-804.

https://doi.org/10.1016/j.immuni.2013.04.004

Hoeffel G, Wang Y, Greter M, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. Journal of Experimental Medicine[J]. 2012; 209(6): 1167-1181. https://doi.org/10.1084/jem.20120340

Ide S, Yahara Y, Kobayashi Y, et al. Yolk-sac-derived macrophages progressively expand in the mouse kidney with age. Elife[J]. 2020; 9: e51756. https://doi.org/10.7554/eLife.51756

Dick S A, Wong A, Hamidzada H, et al. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Science Immunology[J]. 2022; 7(67): eabf7777.

https://doi.org/10.1126/sciimmunol.abf7777

van de Laar L, Saelens W, De Prijck S, et al. Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages. Immunity[J]. 2016; 44(4): 755-768. https://doi.org/10.1016/j.immuni.2016.02.017

Weinberger T, Esfandyari D, Messerer D, et al. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nature Communications[J]. 2020; 11(1): 4549.

https://doi.org/10.1038/s41467-020-18287-x

Wang X, Sathe A A, Smith G R, et al. Heterogeneous origins and functions of mouse skeletal muscle-resident macrophages. Proceedings of the National Academy of Sciences[J]. 2020; 117(34): 20729-20740.

https://doi.org/10.1073/pnas.1915950117

Murray P J, Allen J E, Biswas S K, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity[J]. 2014; 41(1): 14-20. https://doi.org/10.1016/j.immuni.2014.06.008

Unuvar Purcu D, Korkmaz A, Gunalp S, et al. Effect of stimulation time on the expression of human macrophage polarization markers. PLOS ONE[J]. 2022; 17(3): e0265196.

https://doi.org/10.1371/journal.pone.0265196

Brecht K, Weigert A, Hu J, et al. Macrophages programmed by apoptotic cells promote angiogenesis via prostaglandin E2. The FASEB Journal[J]. 2011; 25(7): 2408-2417. https://doi.org/10.1096/fj.10-179473

Graney P L, Ben-Shaul S, Landau S, et al. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Sci Adv[J]. 2020; 6(18): eaay6391. https://doi.org/10.1126/sciadv.aay6391

Das A, Ganesh K, Khanna S, et al. Engulfment of Apoptotic Cells by Macrophages: A Role of MicroRNA-21 in the Resolution of Wound Inflammation. The Journal of Immunology[J]. 2014; 192(3): 1120-1129.

https://doi.org/10.4049/jimmunol.1300613

Arnold L, Henry A, Poron F, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. Journal of Experimental Medicine[J]. 2007; 204(5): 1057-1069.

https://doi.org/10.1084/jem.20070075

Svedberg F R, Brown S L, Krauss M Z, et al. The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nature Immunology[J]. 2019; 20(5): 571-580.

https://doi.org/10.1038/s41590-019-0352-y

Jackaman C, Yeoh T L, Acuil M L, et al. Murine mesothelioma induces locally-proliferating IL-10(+)TNF-α(+)CD206(-)CX3CR1(+) M3 macrophages that can be selectively depleted by chemotherapy or immunotherapy. Oncoimmunology[J]. 2016; 5(6): e1173299.

https://doi.org/10.1080/2162402x.2016.1173299

Boibessot C, Molina O, Lachance G, et al. Subversion of infiltrating prostate macrophages to a mixed immunosuppressive tumor-associated macrophage phenotype. Clinical and Translational Medicine[J]. 2022; 12(1): e581.

https://doi.org/10.1002/ctm2.581

Stout R D, Jiang C, Matta B, et al. Macrophages Sequentially Change Their Functional Phenotype in Response to Changes in Microenvironmental Influences1. The Journal of Immunology[J]. 2005; 175(1): 342-349.

https://doi.org/10.4049/jimmunol.175.1.342

He H, Xu J, Warren C M, et al. Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood[J]. 2012; 120(15): 3152-3162.

https://doi.org/10.1182/blood-2012-04-422758

Leach H G, Chrobak I, Han R, et al. Endothelial cells recruit macrophages and contribute to a fibrotic milieu in bleomycin lung injury. American Journal of Respiratory Cell and Molecular Biology[J]. 2013; 49(6): 1093-1101.

https://doi.org/10.1165/rcmb.2013-0152OC

Mysore V, Tahir S, Furuhashi K, et al. Monocytes transition to macrophages within the inflamed vasculature via monocyte CCR2 and endothelial TNFR2. Journal of Experimental Medicine[J]. 2022; 219(5).

https://doi.org/10.1084/jem.20210562

Bruce A C, Kelly-Goss M R, Heuslein J L, et al. Monocytes Are Recruited From Venules During Arteriogenesis in the Murine Spinotrapezius Ligation Model. Arteriosclerosis, Thrombosis, and Vascular Biology[J]. 2014; 34(9): 2012-2022. https://doi.org/10.1161/ATVBAHA.114.303399

Krishnasamy K, Limbourg A, Kapanadze T, et al. Blood vessel control of macrophage maturation promotes arteriogenesis in ischemia. Nature Communications[J]. 2017; 8(1): 952. https://doi.org/10.1038/s41467-017-00953-2

Zhang J, Muri J, Fitzgerald G, et al. Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metabolism[J]. 2020; 31(6): 1136-1153.e1137.

https://doi.org/10.1016/j.cmet.2020.05.004

Zhou B, Magana L, Hong Z, et al. The angiocrine Rspondin3 instructs interstitial macrophage transition via metabolic–epigenetic reprogramming and resolves inflammatory injury. Nature Immunology[J]. 2020; 21(11): 1430-1443.

https://doi.org/10.1038/s41590-020-0764-8

Fantin A, Vieira J M, Gestri G, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood[J]. 2010; 116(5): 829-840.

https://doi.org/10.1182/blood-2009-12-257832

Gurevich D B, Severn C E, Twomey C, et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. The EMBO Journal[J]. 2018; 37(13): e97786.

https://doi.org/10.15252/embj.201797786

Martin P, Gurevich D B. Macrophage regulation of angiogenesis in health and disease. Seminars in Cell & Developmental Biology[J]. 2021; 119: 101-110. https://doi.org/10.1016/j.semcdb.2021.06.010

Willenborg S, Lucas T, van Loo G, et al. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood[J]. 2012; 120(3): 613-625. https://doi.org/10.1182/blood-2012-01-403386

Sainson R C A, Johnston D A, Chu H C, et al. TNF primes endothelial cells for angiogenic sprouting by inducing a tip cell phenotype. Blood[J]. 2008; 111(10): 4997-5007. https://doi.org/10.1182/blood-2007-08-108597

Spiller K L, Anfang R R, Spiller K J, et al. The role of macrophage phenotype in vascularization of tissue engineering scaffolds. Biomaterials[J]. 2014; 35(15): 4477-4488. https://doi.org/10.1016/j.biomaterials.2014.02.012

Puranik A S, Leaf I A, Jensen M A, et al. Kidney-resident macrophages promote a proangiogenic environment in the normal and chronically ischemic mouse kidney. Scientific Reports[J]. 2018; 8(1): 13948.

https://doi.org/10.1038/s41598-018-31887-4

Dube C T, Ong Y H B, Wemyss K, et al. Age-Related Alterations in Macrophage Distribution and Function Are Associated With Delayed Cutaneous Wound Healing. Frontiers in Immunology[J]. 2022; 13.

https://doi.org/10.3389/fimmu.2022.943159

Chen Y, Hao X, Li M, et al. UGRP1-modulated MARCO+ alveolar macrophages contribute to age-related lung fibrosis. Immunity & Ageing[J]. 2023; 20(1): 14. https://doi.org/10.1186/s12979-023-00338-8

Wong C K, Smith C A, Sakamoto K, et al. Aging Impairs Alveolar Macrophage Phagocytosis and Increases Influenza-Induced Mortality in Mice. The Journal of Immunology[J]. 2017; 199(3): 1060-1068.

https://doi.org/10.4049/jimmunol.1700397

McQuattie-Pimentel A C, Ren Z, Joshi N, et al. The lung microenvironment shapes a dysfunctional response of alveolar macrophages in aging. The Journal of Clinical Investigation[J]. 2021; 131(4).

https://doi.org/10.1172/JCI140299

Stranks A J, Hansen A L, Panse I, et al. Autophagy Controls Acquisition of Aging Features in Macrophages. Journal of Innate Immunity[J]. 2015; 7(4): 375-391. https://doi.org/10.1159/000370112

Lumeng C N, Liu J, Geletka L, et al. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. The Journal of Immunology[J]. 2011; 187(12): 6208-6216.

https://doi.org/10.4049/jimmunol.1102188

Ahmadi M, Karlsen A, Mehling J, et al. Aging is associated with an altered macrophage response during human skeletal muscle regeneration. Experimental Gerontology[J]. 2022; 169: 111974.

https://doi.org/10.1016/j.exger.2022.111974

Tam C S, Sparks L M, Johannsen D L, et al. Low Macrophage Accumulation in Skeletal Muscle of Obese Type 2 Diabetics and Elderly Subjects. Obesity[J]. 2012; 20(7): 1530-1533. https://doi.org/10.1038/oby.2012.24

Jensen S M, Bechshøft C J L, Heisterberg M F, et al. Macrophage Subpopulations and the Acute Inflammatory Response of Elderly Human Skeletal Muscle to Physiological Resistance Exercise. Frontiers in Physiology[J]. 2020; 11.

https://doi.org/10.3389/fphys.2020.00811

Cui C-Y, Driscoll R K, Piao Y, et al. Skewed macrophage polarization in aging skeletal muscle. Aging Cell[J]. 2019; 18(6): e13032.

https://doi.org/10.1111/acel.13032

Chittimalli K, Jahan J, Sakamuri A, et al. Reversal of aging-associated increase in myelopoiesis and expression of alarmins by angiotensin-(1–7). Scientific Reports[J]. 2023; 13(1): 2543.

https://doi.org/10.1038/s41598-023-29853-w

Duong L, Pixley F J, Nelson D J, et al. Aging Leads to Increased Monocytes and Macrophages With Altered CSF-1 Receptor Expression and Earlier Tumor-Associated Macrophage Expansion in Murine Mesothelioma. Frontiers in Aging[J]. 2022; 3: 848925. https://doi.org/10.3389/fragi.2022.848925

Jackaman C, Radley-Crabb H G, Soffe Z, et al. Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice. Aging Cell[J]. 2013; 12(3): 345-357. https://doi.org/10.1111/acel.12062

Kim O H, Kim H, Kang J, et al. Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice. BMB Reports[J]. 2017; 50(1): 43-48.

https://doi.org/10.5483/BMBRep.2017.50.1.167

Bloomer S A, Moyer E D, Brown K E, et al. Aging results in accumulation of M1 and M2 hepatic macrophages and a differential response to gadolinium chloride. Histochemistry and Cell Biology[J]. 2020; 153(1): 37-48.

https://doi.org/10.1007/s00418-019-01827-y

Hilmer S N, Cogger V C, Le Couteur D G. Basal activity of Kupffer cells increases with old age. The Journals of Gerontology: Series A[J]. 2007; 62(9): 973-978. https://doi.org/10.1093/gerona/62.9.973

Golden-Mason L, O'Farrelly C. Having it all? Stem cells, haematopoiesis and lymphopoiesis in adult human liver. Immunology & Cell Biology[J]. 2002; 80(1): 45-51. https://doi.org/10.1046/j.1440-1711.2002.01066.x

Costantini A, Viola N, Berretta A, et al. Age-related M1/M2 phenotype changes in circulating monocytes from healthy/unhealthy individuals. Aging (Albany NY)[J]. 2018; 10(6): 1268-1280.

https://doi.org/10.18632/aging.101465

Cao Y, Fan Y, Li F, et al. Phenotypic and functional alterations of monocyte subsets with aging. Immunity & Ageing[J]. 2022; 19(1): 63.

https://doi.org/10.1186/s12979-022-00321-9

Seidler S, Zimmermann H W, Bartneck M, et al. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunology[J]. 2010; 11(1): 30.

https://doi.org/10.1186/1471-2172-11-30

Ho T T, Warr M R, Adelman E R, et al. Autophagy maintains the metabolism and function of young and old stem cells. Nature[J]. 2017; 543(7644): 205-210. https://doi.org/10.1038/nature21388

Dykstra B, Olthof S, Schreuder J, et al. Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. Journal of Experimental Medicine[J]. 2011; 208(13): 2691-2703.

https://doi.org/10.1084/jem.20111490

Cho R H, Sieburg H B, Muller-Sieburg C E. A new mechanism for the aging of hematopoietic stem cells: aging changes the clonal composition of the stem cell compartment but not individual stem cells. Blood[J]. 2008; 111(12): 5553-5561. https://doi.org/10.1182/blood-2007-11-123547

Pang W W, Price E A, Sahoo D, et al. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proceedings of the National Academy of Sciences[J]. 2011; 108(50): 20012-20017.

https://doi.org/10.1073/pnas.1116110108

Linehan E, Dombrowski Y, Snoddy R, et al. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis. Aging Cell[J]. 2014; 13(4): 699-708. https://doi.org/10.1111/acel.12223

Wang Y, Wehling-Henricks M, Samengo G, et al. Increases of M2a macrophages and fibrosis in aging muscle are influenced by bone marrow aging and negatively regulated by muscle-derived nitric oxide. Aging Cell[J]. 2015; 14(4): 678-688. https://doi.org/10.1111/acel.12350

Frisch B J, Hoffman C M, Latchney S E, et al. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via interleukin-1B. JCI Insight[J]. 2019; 4(10): https://doi.org/10.1172/jci.insight.124213

Pinke K H, Calzavara B, Faria P F, et al. Proinflammatory profile of in vitro monocytes in the ageing is affected by lymphocytes presence. Immunity & Ageing[J], 2013; 10(1): 22. https://doi.org/10.1186/1742-4933-10-22

Becker L, Nguyen L, Gill J, et al. Age-dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system. Gut[J]. 2018; 67(5): 827-836.

https://doi.org/10.1136/gutjnl-2016-312940

Brandenberger C, Kling K M, Vital M, et al. The Role of Pulmonary and Systemic Immunosenescence in Acute Lung Injury. Aging and Disease[J]. 2018; 9(4): 553-565. https://doi.org/10.14336/ad.2017.0902

Renshaw M, Rockwell J, Engleman C, et al. Cutting Edge: Impaired Toll-Like Receptor Expression and Function in Aging. The Journal of Immunology[J]. 2002; 169(9): 4697-4701.

https://doi.org/10.4049/jimmunol.169.9.4697

Boehmer E D, Goral J, Faunce D E, et al. Age-dependent decrease in Toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. Journal of Leukocyte Biology[J]. 2004; 75(2): 342-349. https://doi.org/10.1189/jlb.0803389

van Duin D, Mohanty S, Thomas V, et al. Age-Associated Defect in Human TLR-1/2 Function1. The Journal of Immunology[J]. 2007; 178(2): 970-975. https://doi.org/10.4049/jimmunol.178.2.970

Nyugen J, Agrawal S, Gollapudi S, et al. Impaired Functions of Peripheral Blood Monocyte Subpopulations in Aged Humans. Journal of Clinical Immunology[J]. 2010; 30(6): 806-813.

https://doi.org/10.1007/s10875-010-9448-8

Chelvarajan R L, Collins S M, Van Willigen J M, et al. The unresponsiveness of aged mice to polysaccharide antigens is a result of a defect in macrophage function. Journal of Leukocyte Biology[J]. 2005; 77(4): 503-512.

https://doi.org/10.1189/jlb.0804449

Wu D, Mura C, Beharka A A, et al. Age-associated increase in PGE2 synthesis and COX activity in murine macrophages is reversed by vitamin E. American Journal of Physiology-Cell Physiology[J]. 1998; 275(3): C661-668. https://doi.org/10.1152/ajpcell.1998.275.3.C661

Herrero C, Marqués L, Lloberas J, et al. IFN-γ–dependent transcription of MHC class II IA is impaired in macrophages from aged mice. The Journal of Clinical Investigation[J]. 2001; 107(4): 485-493.

https://doi.org/10.1172/JCI11696

Jämsen E, Pajarinen J, Lin T-h, et al. Effect of Aging on the Macrophage Response to Titanium Particles. Journal of Orthopaedic Research[J]. 2020; 38(2): 405-416. https://doi.org/10.1002/jor.24461

Tomay F, Wells K, Duong L, et al. Aged neutrophils accumulate in lymphoid tissues from healthy elderly mice and infiltrate T- and B-cell zones. Immunology & Cell Biology[J]. 2018; 96(8): 831-840.

https://doi.org/10.1111/imcb.12046

Martin G, Sewell R B, Yeomans N D, et al. Hepatic Kupffer cell function: the efficiency of uptake and intracellular degradation of 14C-labelled mitochondria is reduced in aged rats. Mechanisms of Ageing and Development[J]. 1994; 73(3): 157-168. https://doi.org/10.1016/0047-6374(94)90048-5

Durham S K, Brouwer A, Barelds R J, et al. Comparative endotoxin-induced hepatic injury in young and aged rats. Journal of Pathology[J]. 1990; 162(4): 341-349. https://doi.org/10.1002/path.1711620412

A-Gonzalez N, Quintana J A, García-Silva S, et al. Phagocytosis imprints heterogeneity in tissue-resident macrophages. Journal of Experimental Medicine[J]. 2017; 214(5): 1281-1296.

https://doi.org/10.1084/jem.20161375

Zhang S, Weinberg S, DeBerge M, et al. Efferocytosis Fuels Requirements of Fatty Acid Oxidation and the Electron Transport Chain to Polarize Macrophages for Tissue Repair. Cell Metabolism[J]. 2019; 29(2): 443-456.e445.

https://doi.org/10.1016/j.cmet.2018.12.004

Yousefzadeh M J, Flores R R, Zhu Y, et al. An aged immune system drives senescence and ageing of solid organs. Nature[J]. 2021; 594(7861): 100-105. https://doi.org/10.1038/s41586-021-03547-7

Yousefzadeh M J, Zhao J, Bukata C, et al. Tissue specificity of senescent cell accumulation during physiologic and accelerated aging of mice. Aging Cell[J]. 2020; 19(3): e13094.

https://doi.org/10.1111/acel.13094

Ovadya Y, Landsberger T, Leins H, et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nature Communications[J]. 2018; 9(1): 5435. https://doi.org/10.1038/s41467-018-07825-3

Liu Z, Gu Y, Chakarov S, et al. Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells. Cell[J]. 2019; 178(6): 1509-1525.e1519. https://doi.org/10.1016/j.cell.2019.08.009

Lacerda Mariano L, Rousseau M, Varet H, et al. Functionally distinct resident macrophage subsets differentially shape responses to infection in the bladder. Science Advances[J]. 2020; 6(48): eabc5739.

https://doi.org/10.1126/sciadv.abc5739

Misharin A V, Morales-Nebreda L, Reyfman P A, et al. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. Journal of Experimental Medicine[J]. 2017; 214(8): 2387-2404.

https://doi.org/10.1084/jem.20162152

Gather L, Nath N, Falckenhayn C, et al. Macrophages Are Polarized toward an Inflammatory Phenotype by their Aged Microenvironment in the Human Skin. Journal of Investigative Dermatology[J]. 2022; 142(12): 3136-3145.e3111. https://doi.org/10.1016/j.jid.2022.06.023

Zhang Z, Schlamp F, Huang L, et al. Inflammaging is associated with shifted macrophage ontogeny and polarization in the aging mouse ovary. Reproduction[J]. 2020; 159(3): 325-337.

https://doi.org/10.1530/REP-19-0330

Molawi K, Wolf Y, Kandalla P K, et al. Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med[J]. 2014; 211(11): 2151-2158. https://doi.org/10.1084/jem.20140639

Duong L, Radley-Crabb H G, Gardner J K, et al. Macrophage Depletion in Elderly Mice Improves Response to Tumor Immunotherapy, Increases Anti-tumor T Cell Activity and Reduces Treatment-Induced Cachexia. Frontiers in Genetics[J]. 2018; 9: 526. https://doi.org/10.3389/fgene.2018.00526

Cao L, Che X, Qiu X, et al. M2 macrophage infiltration into tumor islets leads to poor prognosis in non-small-cell lung cancer. Cancer Management Research[J]. 2019; 11: 6125-6138.

https://doi.org/10.2147/cmar.S199832

Zhang B, Yao G, Zhang Y, et al. M2-Polarized tumor-associated macrophages are associated with poor prognoses resulting from accelerated lymphangiogenesis in lung adenocarcinoma. Clinics[J]. 2011; 66(11): 1879-1886.

https://doi.org/10.1590/S1807-59322011001100006

Sanchez-Moral L, Paul T, Martori C, et al. Macrophage CD5L is a target for cancer immunotherapy. eBioMedicine[J]. 2023; 91.

https://doi.org/10.1016/j.ebiom.2023.104555

Franklin R A, Liao W, Sarkar A, et al. The cellular and molecular origin of tumor-associated macrophages. Science[J]. 2014; 344(6186): 921-925. https://doi.org/10.1126/science.1252510

Proctor D T, Huang J, Lama S, et al. Tumor-associated macrophage infiltration in meningioma. Neuro-Oncology Advances[J]. 2019; 1(1).

https://doi.org/10.1093/noajnl/vdz018

Bianchi-Frias D, Damodarasamy M, Hernandez S A, et al. The Aged Microenvironment Influences the Tumorigenic Potential of Malignant Prostate Epithelial Cells. Molecular Cancer Research[J]. 2019; 17(1): 321-331.

https://doi.org/10.1158/1541-7786.MCR-18-0522

Chen J J, Lin Y C, Yao P L, et al. Tumor-associated macrophages: the double-edged sword in cancer progression. Journal of Clinical Oncology[J]. 2005; 23(5): 953-964. https://doi.org/10.1200/jco.2005.12.172

Zhu X D, Zhang J B, Zhuang P Y, et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. Journal of Clinical Oncology[J]. 2008; 26(16): 2707-2716.

https://doi.org/10.1200/jco.2007.15.6521

Zhao X, Qu J, Sun Y, et al. Prognostic significance of tumor-associated macrophages in breast cancer: a meta-analysis of the literature. Oncotarget[J].2017; 8(18): 30576-30586. https://doi.org/10.18632/oncotarget.15736

Casanova-Acebes M, Dalla E, Leader A M, et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature[J]. 2021; 595(7868): 578-584. https://doi.org/10.1038/s41586-021-03651-8

Liu L, Ye Y, Zhu X. MMP-9 secreted by tumor associated macrophages promoted gastric cancer metastasis through a PI3K/AKT/Snail pathway. Biomedicine & Pharmacotherapy[J]. 2019; 117: 109096.

https://doi.org/10.1016/j.biopha.2019.109096

Arlauckas S P, Garris C S, Kohler R H, et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Science Translational Medicine[J]. 2017; 9(389).

https://doi.org/10.1126/scitranslmed.aal3604

Shree T, Olson O C, Elie B T, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes & Development[J]. 2011; 25(23): 2465-2479.

https://doi.org/10.1101/gad.180331.111

Quaranta V, Rainer C, Nielsen S R, et al. Macrophage-Derived Granulin Drives Resistance to Immune Checkpoint Inhibition in Metastatic Pancreatic Cancer. Cancer Research[J]. 2018; 78(15): 4253-4269.

https://doi.org/10.1158/0008-5472.CAN-17-3876

Modak M, Mattes A-K, Reiss D, et al. CD206+ tumor-associated macrophages cross-present tumor antigen and drive antitumor immunity. JCI Insight[J]. 2022; 7(11): https://doi.org/10.1172/jci.insight.155022

Munn D H, Cheung N K. Phagocytosis of tumor cells by human monocytes cultured in recombinant macrophage colony-stimulating factor. Journal of Experimental Medicine[J].1990; 172(1): 231-237.

https://doi.org/10.1084/jem.172.1.231

Johnson W J, Bolognesi D P, Adams D O. Antibody-dependent cytolysis (ADCC) of tumor cells by activated murine macrophages is a two-step process: Quantification of target binding and subsequent target lysis. Cellular Immunology[J]. 1984; 83(1): 170-180. https://doi.org/10.1016/0008-8749(84)90236-3

Tsao L-C, Crosby E J, Trotter T N, et al. CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis. JCI Insight[J]. 2019; 4(24).

https://doi.org/10.1172/jci.insight.131882

Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Current Opinion in Immunology[J]. 2010; 22(2): 231-237. https://doi.org/10.1016/j.coi.2010.01.009

Hirano R, Okamoto K, Shinke M, et al. Tissue-resident macrophages are major tumor-associated macrophage resources, contributing to early TNBC development, recurrence, and metastases. Communications Biology[J]. 2023; 6(1): 144.

https://doi.org/10.1038/s42003-023-04525-7

Dirkx A E, Oude Egbrink M G, Wagstaff J, et al. Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. Journal of Leukocyte Biology[J]. 2006; 80(6): 1183-1196.

https://doi.org/10.1189/jlb.0905495

Dwyer A R, Greenland E L, Pixley F J. Promotion of Tumor Invasion by Tumor-Associated Macrophages: The Role of CSF-1-Activated Phosphatidylinositol 3 Kinase and Src Family Kinase Motility Signaling. Cancers[J]. 2017; 9(6): 68. https://doi.org/doi:10.3390/cancers9060068

Gyori D, Lim E L, Grant F M, et al. Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight[J]. 2018; 3(11): https://doi.org/10.1172/jci.insight.120631

Sanford D E, Belt B A, Panni R Z, et al. Inflammatory Monocyte Mobilization Decreases Patient Survival in Pancreatic Cancer: A Role for Targeting the CCL2/CCR2 Axis. Clinical Cancer Research[J]. 2013; 19(13): 3404-3415.

https://doi.org/10.1158/1078-0432.CCR-13-0525

Walens A, DiMarco A V, Lupo R, et al. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. Elife[J]. 2019; 8.

https://doi.org/10.7554/eLife.43653

Okikawa S, Morine Y, Saito Y, et al. Inhibition of the VEGF signaling pathway attenuates tumor‑associated macrophage activity in liver cancer. Oncology Reports[J]. 2022; 47(4).

https://doi.org/10.3892/or.2022.8282

Linde N, Lederle W, Depner S, et al. Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages. The Journal of Pathology[J]. 2012; 227(1): 17-28.

https://doi.org/10.1002/path.3989

Standiford T J, Kuick R, Bhan U, et al. TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. Oncogene[J]. 2011; 30(21): 2475-2484. https://doi.org/10.1038/onc.2010.619

Shen H, Liu J, Chen S, et al. Prognostic Value of Tumor-Associated Macrophages in Clear Cell Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Frontiers in Oncology[J]. 2021; 11.

https://doi.org/10.3389/fonc.2021.657318

Wang Q, He Z, Huang M, et al. Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2α. Nature Communications[J]. 2018; 9(1): 559. https://doi.org/10.1038/s41467-018-03050-0

Yin S, Huang J, Li Z, et al. The Prognostic and Clinicopathological Significance of Tumor-Associated Macrophages in Patients with Gastric Cancer: A Meta-Analysis. PLOS ONE[J]. 2017; 12(1): e0170042.

https://doi.org/10.1371/journal.pone.0170042

Gordon S R, Maute R L, Dulken B W, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature[J]. 2017; 545(7655): 495-499.

https://doi.org/10.1038/nature22396

Helm O, Held-Feindt J, Grage-Griebenow E, et al. Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. International Journal of Cancer[J]. 2014; 135(4): 843-861. https://doi.org/10.1002/ijc.28736

Chen D, Varanasi S K, Hara T, et al. CTLA-4 blockade induces a microglia-Th1 cell partnership that stimulates microglia phagocytosis and anti-tumor function in glioblastoma. Immunity[J]. 2023; 56(9): 2086-2104.e2088.

https://doi.org/10.1016/j.immuni.2023.07.015

Romano E, Kusio-Kobialka M, Foukas P G, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proceedings of the National Academy of Sciences[J]. 2015; 112(19): 6140-6145. https://doi.org/10.1073/pnas.1417320112

Rashidian M, LaFleur M W, Verschoor V L, et al. Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proceedings of the National Academy of Sciences[J]. 2019; 116(34): 16971-16980. https://doi.org/10.1073/pnas.1905005116

Peranzoni E, Lemoine J, Vimeux L, et al. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti–PD-1 treatment. Proceedings of the National Academy of Sciences[J]. 2018; 115(17): E4041-E4050. https://doi.org/10.1073/pnas.1720948115

Pombo Antunes A R, Scheyltjens I, Lodi F, et al. Single-cell profiling of myeloid cells in glioblastoma across species and disease stage reveals macrophage competition and specialization. Nature Neuroscience[J]. 2021; 24(4): 595-610. https://doi.org/10.1038/s41593-020-00789-y

Loyher P-L, Hamon P, Laviron M, et al. Macrophages of distinct origins contribute to tumor development in the lung. Journal of Experimental Medicine[J]. 2018; 215(10): 2536-2553.

https://doi.org/10.1084/jem.20180534

Simon M-P, Tournaire R, Pouyssegur J. The angiopoietin-2 gene of endothelial cells is up-regulated in hypoxia by a HIF binding site located in its first intron and by the central factors GATA-2 and Ets-1. Journal of Cellular Physiology[J]. 2008; 217(3): 809-818. https://doi.org/10.1002/jcp.21558

Pichiule P, Chavez J C, LaManna J C. Hypoxic Regulation of Angiopoietin-2 Expression in Endothelial Cells. Journal of Biological Chemistry[J]. 2004; 279(13): 12171-12180.

https://doi.org/10.1074/jbc.M305146200

Murdoch C, Giannoudis A, Lewis C E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood[J]. 2004; 104(8): 2224-2234.

https://doi.org/10.1182/blood-2004-03-1109

Gopinathan G, Milagre C, Pearce O M, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Research[J]. 2015; 75(15): 3098-3107.

https://doi.org/10.1158/0008-5472.Can-15-1227

Bonapace L, Coissieux M-M, Wyckoff J, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature[J]. 2014; 515(7525): 130-133.

https://doi.org/10.1038/nature13862

Giraudo E, Inoue M, Hanahan D. An amino-bisphosphonate targets MMP-9–expressing macrophages and angiogenesis to impair cervical carcinogenesis. The Journal of Clinical Investigation[J]. 2004; 114(5): 623-633.

https://doi.org/10.1172/JCI22087

Henze A-T, Mazzone M. The impact of hypoxia on tumor-associated macrophages. The Journal of Clinical Investigation[J]. 2016; 126(10): 3672-3679. https://doi.org/10.1172/JCI84427

Coffelt S B, Tal A O, Scholz A, et al. Angiopoietin-2 Regulates Gene Expression in TIE2-Expressing Monocytes and Augments Their Inherent Proangiogenic Functions. Cancer Research[J]. 2010; 70(13): 5270-5280.

https://doi.org/10.1158/0008-5472.CAN-10-0012

Mazzieri R, Pucci F, Moi D, et al. Targeting the ANG2/TIE2 Axis Inhibits Tumor Growth and Metastasis by Impairing Angiogenesis and Disabling Rebounds of Proangiogenic Myeloid Cells. Cancer Cell[J]. 2011; 19(4): 512-526. https://doi.org/10.1016/j.ccr.2011.02.005

Bianchi-Frias D, Vakar-Lopez F, Coleman I M, et al. The Effects of Aging on the Molecular and Cellular Composition of the Prostate Microenvironment. PLOS ONE[J]. 2010; 5(9): e12501.

https://doi.org/10.1371/journal.pone.0012501

Li Y, Zhao Y, Gao Y, et al. Age-related macrophage alterations are associated with carcinogenesis of colorectal cancer. Carcinogenesis[J]. 2022; 43(11): 1039-1049. https://doi.org/10.1093/carcin/bgac088

Teixeira L R, Almeida L Y, Silva R N, et al. Young and elderly oral squamous cell carcinoma patients present similar angiogenic profile and predominance of M2 macrophages: Comparative immunohistochemical study. Head & Neck[J]. 2019; 41(12): 4111-4120. https://doi.org/10.1002/hed.25954

Wallace P K, Eisenstein T K, Meissler J J, Jr., et al. Decreases in macrophage mediated antitumor activity with aging. Mechanisms of Ageing and Development[J]. 1995; 77(3): 169-184.

https://doi.org/10.1016/0047-6374(94)01524-p

Plowden J, Renshaw-Hoelscher M, Gangappa S, et al. Impaired antigen-induced CD8+ T cell clonal expansion in aging is due to defects in antigen presenting cell function. Cellular Immunology[J]. 2004; 229(2): 86-92.

https://doi.org/10.1016/j.cellimm.2004.07.001

Ma L, Li K, Wei W, et al. Exercise protects aged mice against coronary endothelial senescence via FUNDC1-dependent mitophagy. Redox Biology[J]. 2023; 62: 102693. https://doi.org/10.1016/j.redox.2023.102693

Chen B, Sun Y, Zhang J, et al. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem Cell Research & Therapy[J]. 2019; 10(1): 142.

https://doi.org/10.1186/s13287-019-1253-6

Li Y, Kračun D, Dustin C M, et al. Forestalling age-impaired angiogenesis and blood flow by targeting NOX: Interplay of NOX1, IL-6, and SASP in propagating cell senescence. Proceedings of the National Academy of Sciences[J]. 2021; 118(42): e2015666118. https://doi.org/10.1073/pnas.2015666118

Moriya J, Minamino T. Angiogenesis, Cancer, and Vascular Aging. Frontiers in Cardiovascular Medicine[J]. 2017; 4: 65.

https://doi.org/10.3389/fcvm.2017.00065

Bhayadia R, Schmidt B M W, Melk A, et al. Senescence-Induced Oxidative Stress Causes Endothelial Dysfunction. The Journals of Gerontology: Series A[J]. 2015; 71(2): 161-169.

https://doi.org/10.1093/gerona/glv008

Rossman M J, Kaplon R E, Hill S D, et al. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. American Journal of Physiology-Heart and Circulatory Physiology[J]. 2017; 313(5): H890-h895.

https://doi.org/10.1152/ajpheart.00416.2017

Rajapakse A G, Yepuri G, Carvas J M, et al. Hyperactive S6K1 Mediates Oxidative Stress and Endothelial Dysfunction in Aging: Inhibition by Resveratrol. PLOS ONE[J]. 2011; 6(4): e19237.

https://doi.org/10.1371/journal.pone.0019237

Krouwer V J D, Hekking L H P, Langelaar-Makkinje M, et al. Endothelial cell senescence is associated with disrupted cell-cell junctions and increased monolayer permeability. Vascular Cell[J]. 2012; 4(1): 12.

https://doi.org/10.1186/2045-824X-4-12

Lin J-R, Shen W-L, Yan C, et al. Downregulation of Dynamin-Related Protein 1 Contributes to Impaired Autophagic Flux and Angiogenic Function in Senescent Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology[J]. 2015; 35(6): 1413-1422. https://doi.org/10.1161/ATVBAHA.115.305706

Coppé J-P, Desprez P-Y, Krtolica A, et al. The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annual Review of Pathology: Mechanisms of Disease[J]. 2010; 5(1): 99-118.

https://doi.org/10.1146/annurev-pathol-121808-102144

Coleman P R, Chang G, Hutas G, et al. Age-associated stresses induce an anti-inflammatory senescent phenotype in endothelial cells. Aging (Albany NY)[J]. 2013; 5(12): 913-924.

https://doi.org/10.18632/aging.100622

Coleman P R, Hahn C N, Grimshaw M, et al. Stress-induced premature senescence mediated by a novel gene, SENEX, results in an anti-inflammatory phenotype in endothelial cells. Blood[J]. 2010; 116(19): 4016-4024.

https://doi.org/10.1182/blood-2009-11-252700

Powter E E, Coleman P R, Tran M H, et al. Caveolae control the anti-inflammatory phenotype of senescent endothelial cells. Aging Cell[J]. 2015; 14(1): 102-111. https://doi.org/10.1111/acel.12270

Sharma C, Wang H-X, Li Q, et al. Protein Acyltransferase DHHC3 Regulates Breast Tumor Growth, Oxidative Stress, and Senescence. Cancer Research[J]. 2017; 77(24): 6880-6890.

https://doi.org/10.1158/0008-5472.CAN-17-1536

Haston S, Gonzalez-Gualda E, Morsli S, et al. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer. Cancer Cell[J]. 2023: https://doi.org/10.1016/j.ccell.2023.05.004

Ly L V, Baghat A, Versluis M, et al. In Aged Mice, Outgrowth of Intraocular Melanoma Depends on Proangiogenic M2-Type Macrophages. The Journal of Immunology[J]. 2010; 185(6): 3481-3488.

https://doi.org/10.4049/jimmunol.0903479

Downloads

Published

2024-02-22