Prebiotic RNA Engineering in a Clay Matrix: Molecular Modeling Rationale and Mechanistic Proposals for Explaining Helicity, Antiparallelism and Prebiotic Replication of Nucleic Acids
DOI:
https://doi.org/10.37155/2972-449X-vol1(2)-75Keywords:
Antiparallel stacking, Auto-intercalation, Clay matrix, Montmorillonite, Nucleic acids helicity, Origin of life, RNA replication, Tetraplexes, ViroidsAbstract
In the last few years, a renewed interest has been devoted to the origin of life. Nucleic acids have a central role in biogenesis and prebiotic synthesis of ribose, purines and pyrimidines has been described. Particularly attractive is the idea that life on Earth was first founded on simple and autocatalytic RNA molecules (RNA world). RNA duplexes are formed by helical and antiparallel chains, but the rationale for these features is not yet known. An inverted (antiparallel) stacking of purine rings from guanosine and other nucleosides has been found in crystallographic studies. Molecular modeling also supports an inverted conformation, and this preferential stacking occurs when they are aggregated within a clay (montmorillonite) matrix, which is confirmed by spectral studies. Thus, crystallography, spectroscopy and molecular modeling allow proposing a “zipper” model in which antiparallel nucleosides stack within the clay matrix, and then high-energy polyphosphates form auto-intercalated single RNA chains. Unstacking and strand separation result in the shortening and inclination of the ribose-phosphate chains, leading to helicity, antiparallelism and base pairing by H-bonding, with formation of typical RNA structures such as hairpins, cloverleaves, hammerheads, dumbbells, circular viroids and virusoids. A “tetris” model for the prebiotic self-replication mechanism of these simple RNA duplexes, involving the formation of an RNA tetraplex, is also proposed.
References
Bernal JD. The physical basis of life. Proc. Royal Soc. London, 1949; 357A: 537-558.
Goldschmidt VM. Geochemical aspects of the origin of complex organic molecules on the Earth, as precursors to organic life. New Biol. 1952; 12: 97-105.
Calvin M. The chemistry of life. 3. How life originated on Earth and on the world beyond. Chem. Eng. News 1961; 8: 96-104.
Carvajal G. Bases experimentales sobre el origen de la materia viva. En: Introducción a la biología moderna (Ondarza RN, Ed.) 1964. Mexico, Buenos Aires: Fondo de Cultura Económico. pp. 13-53.
Joyce GF. RNA evolution and the origins of life. Nature 1989; 338: 217–224
Cronin JR. Clues from the origin of the solar system. In: Cronin JR (Ed.) The molecular origins of life: Assembling pieces of the puzzle, New York: Cambridge University Press. 1998. pp 119-146.
Joyce GF. The antiquity of RNA-based evolution. Nature 2002; 418: 214−221.
Orgel LE. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 2004; 39: 99−123.
Follmann H, Brownson C. Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften 2009; 96: 1265–1292.
Miller SL. A production of amino acids under possible primitive earth conditions.Science 1953; 117: 528-529.
Oró J. Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive earth conditions. Nature 1961; 191: 1193-1194.
Lee BD, Koonin EV. Viroids and viroid-like circular RNAs: Do they descend from primordial replicators? Life, 2022; 12(1): 103.
Orgel LE. Some consequences of the RNA world hypothesis. Orig. Life Evol. Biosph. 2003; 33: 211–218.
Robertson MP, Joyce GF. The origins of the RNA world. Cold Spring Harb. Perspect. Biol. 2012; 4(5): a003608.
Flores R, Gago-Zachert S, Serra P, et al. Viroids: survivors from the RNA world? Ann. Rev. Microbiol. 2014; 68: 395–414.
Bhowmik S, Krishnamurthy R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nature Chem. 2019; 11(11): 1009–1018.
Mayer C. Order and complexity in the RNA world. Life 2023; 13: 603.
Horowitz ED, Engelhart AE, Chen MC, et al. Intercalation as a means to suppress cyclization and promote polymerization of base-pairing oligonucleotides in a prebiotic world. Proc. Natl. Acad. Sci. USA, 2010; 107(12): 5288-5293.
Sharma A, Czégel D, Lachmann M, et al. Assembly theory explains and quantifies selection and evolution. Nature. 2023; 622: 321–328.
Ball P. A new idea for how to assemble life. 2023. https://www.quantamagazine.org/a-new-theory-for-the-assembly-of-life-in-the-universe-20230504?mc_cid=088ea6be73&mc_eid=08eaa3de96
Dauvillier A. The photochemical origin of life. New York, London: Acad. Press; 1965.
Aguilera JA. El origen de la vida. La aparición de los primeros microorganismos. Barcelona: RBA Libros, 2018.
Farías-Rico JA, Mourra-Díaz CM. A short tale of the origin of proteins and ribosome evolution. Microorganisms 2022; 10: 2115.
Powner MW, Sutherland JD. Prebiotic chemistry: a new modus operandi. Phil. Trans. R. Soc. B 2011; 366: 2870–2877.
Oba Y, Takano Y, Furukawa Y, et al. Identifying the wide diversity of extraterrestrial purine and pyrimidine nucleobases in carbonaceous meteorites. Nature Comm. 2022; 13: 2008.
Guschlbauer W. Nucleic acid structure. New York, Heidelberg, Berlin: Springer-Verlag, 1976.
Steward PR, Letham DS (Eds). The ribonucleic acids. New York, Heidelberg: Springer-Verlag; 1977. pp. 129-193.
Geis I. Visualizing the anatomy of A, B and Z-DNAs. J. Biomole. Struct. Dyn. 1983; 1: 581-591.
Saenger W. Principles of nucleic acid structure. New York, Berlin: Springer-Verlag; 1984.
Blackburn GM, Gait MJ. Nucleic acids in chemistry and biology. Oxford, New York, Tokio: Oxford University Press; 1990.
Ghosh A, Bansal M. A glossary of DNA structure from A to Z. Acta Crystallogr. D: Biol. Crystallogr. 2003; 59: 620-626.
Rohs R, West SM, Sosinsky A, et al. The role of DNA shape in protein–DNA recognition. Nature 2009; 461: 1248-1254.
Kilby NJ, Snait MR, Murray JAH. Site-specific recombinases: tools for genome engineering. Trends Genet. 1993; 9: 513-421.
Wei X, Meng D, You C. In vitro metabolic engineering: current status and recent progress. In: Systems and synthetic metabolic engineering, Chapter 8. (L. Liu, G. Du, Y. Liu, eds). London, New York: Acad. Press; 2020. pp. 183-206.
Bugg CE, Thewalt UT, Marsh RE. Base stacking in nucleic acid components: the crystal structures of guanine, guanosine and inosine. Biochem. Biophys. Res. Comm. 1968; 33: 436-440.
Gupta G, Sasisekharan V. Theoretical calculations of base-base interactions in nucleic acids: I. Stacking interactions in free bases. Nucleic Acids Res. 1978; 5(5):1639-1653.
Stockert JC, del Castillo P. Estudios espectroscópicos sobre agregación de cromóforos planos e implicaciones en la síntesis prebiótica de ácidos nucleicos. 3rd. Meeting of the Spanish Society for Cell Biology, Leioa, Vizcaya, Spain. Cell Biol. Rev. 1989; S1: 334-335.
Stockert JC, del Castillo P, Blázquez-Castro A. Induction of metachromasia in cationic dyes and fluorochromes using a clay mineral: A potentially valuable model for histochemical studies. Acta Histochem. 2011; 113: 668-670.
Stockert JC, Blázquez-Castro A. Biomedical overview of melanin. 2. Updating molecular modeling, synthesis mechanism, and supramolecular properties regarding melanoma therapy. Biocell 2022; 46(6): 1391-1415.
Stockert JC, Espada J, Blázquez-Castro A. Melanin-binding colorants: Updating molecular modeling, staining and labeling mechanisms, and biomedical perspectives. Colorants 2022; 1: 91-120.
Stockert JC, Felix-Pozzi MN. Updating curvature of graphitic materials: Molecular modeling studies on the spiral structure of graphene and eumelanin models. Adv. Biol. 2023; 2: 173-205.
He X, Zhu T, Wang X., et al. Fragment quantum mechanical calculation of proteins and its applications. Acc. Chem. Res. 2014; 47(9): 2748-2757.
Stockert JC. Stereoscopy of computer-drawn molecular structures. Biochem. Educ. 1994; 22: 23-25.
Stockert JC, Abasolo MI. Inaccurate chemical structure of dyes and fluorochromes found in the literature can be problematic for teaching and research. Biotech. Histochem. 2011; 86: 52-60.
Rosenberg JM, Seeman NC, Day RO, et al. RNA double-helical fragments at atomic resolution: II. The crystal structure of sodium guanylyl-3’,5’-cytidine nonahydrate. J. Mol. Biol. 1976; 104: 145-167.
Stockert JC, Blázquez-Castro A. Fluorescence microscopy in life sciences. Sharjah, U.A.E.: Bentham Science Publishers. 2017.
Bugg CE, Thomas JM, Sundaralingam M, et al. Stereochemistry of nucleic acids and their constituents. X. Solid-state base-stacking patterns in nucleic acid constituents and polynucleotides. Biopolymers, 1971; 10: 175-219.
Stockert JC. Predictive binding geometry of ligands to DNA minor groove: isohelicity and hydrogen bonding pattern. Meth. Mol. Biol. 2014; 1094: 1-12.
Solie TN, Schellman JA. The interaction of nucleosides in aqueous solution. J. Mol. Biol. 1968; 33: 61-77.
Maevsky AA, Sukhorukov BI. IR study of base stacking interactions. Nucleic Acids Res. 1980; 8: 3029-3042.
Caillet J. Claverie P. Differences of nucleotide stacking patterns in a crystal and in binary complexes - The case of adenine. Biopolymers, 1974; 13: 601-614.
Lipmann F. Metabolic generation and utilization of phosphate bond energy. Adv. Enzymol. 1941; 1: 99-162.
Stryer L. Biochemistry. 3rd. edn. Chapter 13, 1988; San Francisco: W. Freeman. P. 318.
Kulaev IS, Vagabov V, Kulakovskaya T. The biochemistry of inorganic polyphosphates, 2nd edn. 2004; Chichester: John Wiley.
Müller WEG, Wang S, Neufurth M, et al. Polyphosphate as a donor of high-energy phosphate for the synthesis of ADP and ATP. J. Cell Science 2017; 130: 2747-2756.
Mortland MM. Clay-organic complexes and interactions. Adv. Agron. 1970; 22: 75-117.
Sawai H, Orgel LE. Oligonucleotide synthesis catalyzed by the Zn2+ ion. J. Am. Chem. Soc. 1975; 97(12): 3532−3533.
Mildvan AS. Mechanism of enzyme action. Annu. Rev. Biochem. 1974; 43: 357-399.
Ferris JP. Mineral catalysis and prebiotic synthesis: Montmorillonite-catalyzed formation of RNA. Elements, 2005; 1: 145–149.
Ertem G, Ferris JP. Formation of RNA oligomers on montmorillonite: site of catalysis. Orig. Life Evol. Biosph. 1998; 28: 485-499.
Ertem G, Ferris JP. Sequence- and regio-selectivity in the montmorillonite catalyzed synthesis of RNA. Orig. Life Evol. Biosph. 2000; 30: 411-422.
Barltrop JÁ, Grubb PW, Hesp B. Mechanisms for oxidative phosphorylation at the pyridine nucleotide/flavoprotein level. Nature 1963; 199: 759-761.
Song EY, Jiménez EI, Lin H, et al. Prebiotically plausible RNA activation compatible with ribozyme-catalyzed ligation. Angew. Chem. Int. Ed. 2021; 60: 2952 –2957.
Pinna S, Kunz C, Halpern A, et al. A prebiotic basis for ATP as the universal energy currency. PLoS Biol. 2022; 4: 20(10), e3001437.
Jones ME, Lipmann F. Chemical and enzymatic synthesis of carbamyl phosphate. Proc. Natl. Acad. Sci. USA. 1960; 46(9): 1194-1205.
Weimann BJ, Lohrmann R, Orgel E, et al. Template-directed synthesis with adenosine-5′-phosphorimidazolide. Science 1968; 161: 387.
Kool ET. Circular oligonucleotides: New concepts in oligonucleotide design. Annu. Rev. Biophys. Biomol. Struct. 1996; 25: 9-28.
Walton T, Zhang W, Li L, et al. The mechanism of nonenzymatic template copying with imidazole-activated nucleotides. Angew. Chem. Int. Ed. 2019; 58(32): 10812-10819.
Kim SC, Zhou L, Zhang W, et al. A model for the emergence of RNA from a prebiotically plausible mixture of ribonucleotides, arabinonucleotides, and 2′-deoxynucleotides. J. Am. Chem. Soc. 2020; 142: 2317-2326.
Orth ES, Wanderlind EH, Medeiros M, et al. Phosphorylimidazole derivatives: Potentially biosignaling molecules. J. Org. Chem. 2011; 76: 8003–8008.
Kirby AJ, Younas M. The reactivity of phosphate esters. Diester hydrolysis. J. Chem. Soc. B: Physical Organic. 1970; 510-513.
Hendricks SB. Lattice structures of clay minerals and some properties. J. Geol. 1942; 50: 276-290.
Thomas JM. Sheet silicate intercalates: new agents for unusual chemical conversions. In: Whittingham MS, Jacobson AJ, editors. Intercalation chemistry. New York, London: Academic Press; 1982. pp. 55–99.
Hofmann U, Endell K and Diederich Wilm D. Kristallstruktur und Quellung von Montmorillonit. (Das Tonmineral der Bentonittone). Z. Kryst. A, 1933; 86: 340-348.
van Olphen HJ. An introduction to clay colloidal chemistry. New York: Wiley Interscience; 1977.
Marco Brown JL, Arcco MM, Sánchez RMT, et al. Adsorption of picloram herbicide on montmorillonite: Kinetic and equilibrium studies. Coll. Surf. A: 2014; 449: 121-128.
Yariv S, Russell JD, Farmer VC. Infrared study of the adsorption of benzoic acid and nitrobenzene in montmorillonite. Israel J. Chemistry 1966; 4: 201-213.
Whittingham MS. Intercalation chemistry: an introduction. In: Whittingham MS, Jacobson AJ, Eds. Intercalation chemistry. New York, London: Acad. Press; 1982. pp. 1–18.
Rausell-Colom JA, Serratosa JM. Reactions of clays with organic substances. In: Newman ACD, Ed. Chemistry of clays and clay minerals. Essex: Mineralogical Society, Longman Scientific & Technical; 1987. pp. 371–422.
Greenland DJ, Laby RH, Quirk JP. Adsorption of amino-acids and peptides by montmorillonite and illite. Part 2.- Physical adsorption. Trans. Faraday Soc. 1965; 61: 2024-2035.
Greene-Kelly R. Sorption of aromatic organic compounds by montmorillonite. Part 1.- Orientation studies. Trans. Faraday Soc. 1955; 51: 412-424.
Lailach GE, Thompson TD, Brindley GW. Absorption of pyrimidines, purines, and nucleosides by Li-, Na-, Mg-, and Ca-montmorillonite (Clay-organic studies XII). Clays Clay Miner. 1968; 16: 285-293.
Lailach GE, Thompson TD, Brindley GW. Absorption of pyrimidines, purines, and nucleosides by Co-, Ni-, Cu-, and Fe(III)-montmorillonite (Clay-organic studies XIII). Clays Clay Miner. 1968; 16: 295-301.
Lailach GE, Brindley GW. Specific co-absorption of purines and pyrimidines by montmorillonite (Clay-organic studies XV). Clays Clay Miner. 1969; 17: 95-100.
Samuels M, Mor O, Rytwo G. Metachromasy as an indicator of photostabilization of methylene blue adsorbed to clays and minerals. J. Photochem. Photobiol. B: Biol. 2013; 121: 23-26.
Plesa Chicinas R¸ Bedelean H, Stefan R, Maicaneanu A. Ability of a montmorillonitic clay to interact with cationic and anionic dyes in aqueous solutions. J. Mol. Struct. 2018; 1154: 187e195.
Sánchez del Río M, Martinetto P, Reyes-Valerio C, Dooryhée E, et al. Synthesis and acid resistance of Maya blue pigment. Archaeometry 2006; 48: 115-130.
Bujdák J. Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Appl. Clay Sci. 2006; 34: 58-73.
Joshi PC, Pitsch S, Ferris JP. Selectivity of montmorillonite catalyzed prebiotic reactions of D, L-nucleotides. Orig. Life Evol. Biosph. 2007; 37(1): 3–26.
Gillams RJ, Jia TZ. Mineral surface-templated self-assembling systems: Case studies from nanoscience and surface science towards origins of life research. Life 2018; 8: 10.
Jheeta S, Joshi P. Prebiotic RNA synthesis by montmorillonite catalysis. Life 2014; 4: 318–330.
Viswamitra MA, Pandi J. A proposal for a specific double-helical structure in which the polynucleotide strands intercalate instead of forming base-pairs. J. Biomol. Struct. Dyn. 1983; 1: 743-753.
Frank-Kamenetskii MD. Protonated DNA structures. Nucleic Acids Mol. Biol. 1990; 4:1-8.
Arnott S, Bond PJ, Chandrasekaran R. Visualization of an unwound DNA duplex. Nature 1980; 287: 561-563.
Sarma MH, Gupta G, Dhingra MM, et al. During B-Z transition there is no large scale breakage of Watson-Crick base pairs. A direct demonstration using 500 MHz 1H NMR spectroscopy. J. Biomol. Struc. Dyn. 1983; 1: 59-81.
Stockert JC. Cytochemistry of nucleic acids: Binding mechanisms of dyes and fluorochromes. Biocell 1985; 9(2): 89-131.
Udenfriend S. Fluorescence assay in biology and medicine. New York, London: Acad. Press; 1962. pp 294-296.
Udenfriend S, Zaltman P. Fluorescence characteristic of purines, pyrimidines and their derivatives: measurement of guanine in nucleic acid hydrolysates. Anal. Biochem. 3: 49-59.
Low PF. The swelling of clay: III. Dissociation of exchangeable cations. Soil Sci. Soc. Amer. J. 1981; 45: 1074-1078.
Hall K, Cruz P, Tinoco I, et al. “Z-RNA”- a left-handed RNA double helix. Nature 1984; 311: 584-586.
Davis PW, Adamiak RW, Tinoco I. Z-RNA: The solution NMR structure of r(CGCGCG). Biopolymers 1990; 29: 109-121.
van de Sande JH, Ramsing NB, Germann MW, et al. Parallel stranded DNA. Science 1988; 241: 551-557.
Demongeot J, Thellier M. Primitive oligomeric RNAs at the origins of life on Earth. Int. J. Mol. Sci. 2023; 24: 2274.
Kawamura K, Okamoto F. Cyclization and dimerization of hexanucleotides containing guanine and cytosine with water-soluble carbodiimide. Viva Origino 2001; 29: 162–167.
Mount SM, Steitz JA. Sequence of U1 RNA from Drosophila melanogaster: implications for U1 secondary structure and possible involvement in splicing. Nucleic Acids Res. 1981; 9(23): 6351-6368.
Erdmann VA, Digweed N, Pieler T. Dynamics of ribosomal RNA structure. J. Biomol. Struct. Dyn. 1983; 1: 657-667.
Moazed D, Stern S, Noller HF. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J. Mol. Biol. 1986; 187(3): 399-416.
James BD, Olsen GJ, Liu JS, et al. The secondary structure of ribonuclease P RNA, the catalytic element of a ribonucleoprotein enzyme. Cell 1988; 52(1):19-26
Sheldon CC, Jeffies AC, Davies C, et al. RNA self-cleavage by the hammerhead structure. Nucleic Acids Mol. Biol. 1990; 4: 227-242.
Lamond AI, Barabino S, Blencowe BJ. The mammalian pre-mRNA splicing apparatus. Nucleic Acids Mol. Biol. 1990; 4: 243-257.
Tinoco I, Puglisi JD, Wyatt JR. RNA folding. Nucleic Acids Mol. Biol. 1990; 4: 205-226.
Cullen BR, Malim MH. Regulation of HIV-1 gene expression. Nucleic Acids Mol. Biol. 1990; 4: 176-184.
Schimmel P. Interpretation of experiments that delineate transfer RNA recognition in vivo and in vitro. Nucleic Acids Mol. Biol. 1990; 4: 274-287.
Ambros V, Lee RC, Lavanway A, et al. MicroRNAs and other tiny endogenous RNAs in C. elegans. Curr. Biol. 2003; 13: 807–818.
Borggräfe J, Victor J, Rosenbach H, et al. Time-resolved structural analysis of an RNA-cleaving DNA catalyst. Nature 2022; 601:144–149.
Cramer ER, Starcovic SA, Avey RM, et al. Structure of a 10-23 deoxyribozyme exhibiting a homodimer conformation. Commun. Chem. 2023; 6: 119.
Riesner D, Colpan M, Goodman TC, et al. Dynamics and interactions of viroids. J. Biomol. Struct. Dyn. 1983; 11: 669-688.
Tinoco I, Borer JP, Dengler B, et al. Improved estimation of secondary structure in ribonucleic acids. Nature New Biol. 1973; 246: 40-41.
Norris V, Demongeot J. The ring world: Eversion of small double-stranded polynucleotide circlets at the origin of DNA double helix, RNA polymerization, triplet code, twenty amino acids, and strand asymmetry. Int. J. Mol. Sci. 2022: 23: 12915.
Diener TO. Potato spindle tuber "virus". IV. A replicating, low molecular weight RNA. Virology 1971; 45(2): 411–428.
Keese P, Symons RH. The structure of viroids and virusoids. In: Viroids and viroid-like pathogens (Semancik JS, Ed.). Florida: CRC; 1987. pp. 1-47.
Flores R, Di Serio F, Hernández C. Viroids: The noncoding genomes. Sem. Virology 1997; 8(1): 65–73.
Moelling K, Broecker F. Viroids and the origin of life. Int. J. Mol. Sci. 2021; 22(7): 3476.
Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA, 1976; 73 (11): 3852–3856.
Flores R, Serra P, Minoia S, et al. Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs. Front. Microbiol. 2012; 3: 217.
Lilley DMJ, Sutherland J. The chemical origins of life and its early evolution: an introduction. Phil. Trans. R. Soc. B 2011; 366: 2853–2856.
Diener TO. Circular RNAs: relics of precellular evolution?. Proc. Nat. Acad. Sci. USA, 1989; 86(23): 9370–9374.
Zhou L, Ding D, Zostak KW. The virtual circular genome model for primordial RNA replication. RNA 2021; 27: 1–11.
Ding D, Zhou L, Mittal S, et al. Experimental tests of the virtual circular genome model for nonenzymatic RNA replication. J. Am. Chem. Soc. 2023; 145: 7504−751.
Guo X, Fu S, Ying J, et al. Prebiotic chemistry: a review of nucleoside phosphorylation and polymerization. Open Biol. 2023: 13: 220234.
Anderson GW. New approaches to peptide synthesis. Ann. N.Y. Acad. Sci. 1960; 88: 676-688.
Thiele D, Guschlbauer W, Favre A. Protonated polynucleotide structures. X. Optical properties of poly(I)-poly(C) and its disproportionation complexes Biochim. Biophys. Acta 1972; 272(1): 22-26.
Arnott S, Bond PJ. Structures for poly(U) ∙ poly(A) ∙ poly(U) triple stranded polynucleotides. Nature New Biol. 1973; 244(134): 99-101.
Arnott S, Selsing E. Structures for the polynucleotide complexes poly(dA) ∙ poly(dT) and poly(dT) ∙ poly(dA) ∙ Poly(dT). J. Mol. Biol.1974; 88(2): 509-521.
Brown JA. Unraveling the structure and biological functions of RNA triple helices. Wiley Interdiscip. Rev. RNA. 2020; 11(6): e1598.
Broitman SL, Im DD, Fresco JR. Formation of the triple-stranded polynucleotide helix, poly (AAU). Proc. Natl. Acad. Sci. USA, 1987; 84(15): 5120-5124.
Shibata T, Iwasaki W, Hirota K. The intrinsic ability of double-stranded DNA to carry out D-loop and R-loop formation. Comp. Struct. Biotechnol. J. 2020; 18: 3350–3360.
Arnott S. The geometry of nucleic acids. Prog. Biophys. Mol. Biol. 1970; 21: 265-319.
Löwdin PO. Some aspects of the hydrogen bond in molecular biology. Ann. N.Y. Acad. Sci. 1969; 158(1): 86-95.
Kubitschek HE, Henderson TR. DNA replication. Proc. Natl. Acad. Sci. 1966; 55: 512-519.
O'Brien EJ. Crystal structures of two complexes containing guanine and cytosine derivatives. Acta Cryst. 1967; 23: 92-106.
Simundza G, Sakore TD, Sobell HM. Base-pairing configurations between purines and pyrimidines in the solid state. V. Crystal and molecular structure of two 1:1 hydrogen-bonded complexes, 1-methyluracil: 9-ethyl-8-bromo-2,6-diaminopurine and 1-ethylthymine: 9-ethyl-8-bromo-2,6-diaminopurine. J. Mol. Biol. 1970; 48: 263-278.
Voet D, Rich A. The crystal structures of purines, pyrimidines and their intermolecular compIexes. Prog. Nucleic Acid Res. Mol. Biol. 1970; 10: 183-265.
McGavin S. Models of specifically paired like (homologous) nucleic acid structures. J. Mol. Biol. 1971; 55: 293-298.
Sühnel J. Beyond nucleic acid base pairs: from triads to heptads. Biopolymers 2002; 61: 32–51.
McGavin S. A model for the specific pairing of homologous double-stranded nucleic acid molecules during genetic recombination. Heredity 1977; 39: 15-25.
Morgan AR. Do multistranded polynucleotides have a biological role? TIBS (Trends Biol. Sci.) October 1979; 244-247.
Stockert JC. Stereochemistry of general genetic recombination: Paranemic duplexes and duplex-tetraplex junctions as possible DNA structures for homologous pairing, strand exchange and hybrid resolution. Biol. Zentbl. 1992; 111: 150-163.
Edwards PAW. A possible solution to the problem of unwinding deoxyribonucleic acid, requiring that deoxyribonucleic acid is four-stranded in chromatin. Biochem. Soc. Trans. 1976; 4(4): 792-793.
Edwards PAW. A sequence-independent, four-stranded, double Watson-Crick DNA helix that could solve the unwinding problem of double helices. J. Theor. Biol. 1978; 70: 323-334.
McGavin S. Relationships and transformations between some nucleic acid models. J. Theor. Biol. 1980; 85(4): 665-672.
McGavin S. Four strand recombination models. J. Theor. Biol. 1989; 136: 135-150.
McGavin S. A reconsideration of the possibility of the specific pairing of base pairs. J. Theor. Biol. 1979; 77: 83-99.
Stockert JC. Pairing of underwound DNA duplexes as hypothetical intermediates in genetic recombination. Naturwissenschaften 1986; 73: 100-101.
Lim VI, Mazanov AL. Tertiary structure for palindromeric regions of DNA. FEBS Lett. 1978; 88: 118-123.
McGavin S. Four-strand structure, kinks and cruciforms in DNA. J. Theor. Biol. 1989; 138(1): 117-128.
McGavin S, Wilson HR, Barr GC. Intercalated nucleic acid double helices: a stereochemical possibility. J. Mol. Biol. 1966; 22: 187-191.
Kim SH. Three-dimensional structure of transfer RNA. Prog. Nucleic Acid Res. Mol. Biol. 1976; 17: 181-216.
Zimmerman SB. X-ray study by fiber diffraction methods of a self-aggregate of guanosine-5’-phosphate with the same helical parameters as poly(rG). J. Mol. Biol. 1976; 106: 663-672.
Neidle S. Human telomeric G-quadruplexs: the current status of telomeric G-quadruplexes as therapeutic targets in human cancer. FEBS J. 2010; 277(5): 1138-1125.
Séquin U. How to view stereoscopic pictures of crystal structures and molecular models. Experientia 1977; 33: 1115-1118.
Blackburn EH. Structure and function of telomeres. Nature 1991; 350: 569-573.
Kankia B. Monomolecular tetrahelix of polyguanine with a strictly defined folding pattern. Sci. Rep. 2018; 8: 10115.
Leroy JL, Guéron M, Mergny JL, et al. Intramolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif. Nucleic Acids Res. 1994; 22(9): 1600-1606.
Phan AT, Maurice Guéron M, Leroy JL. The solution structure and internal motions of a fragment of the cytidine-rich strand of the human telomere. J. Mol. Biol. 2000; 299: 123-144.
Phan AT, Mergny JL. Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix. Nucleic Acids Res. 2002; 30(21): 4618-4625.
Kitaigorodski AI. Order and disorder in the world of atoms. Vol.3, (S. Chomet, Ed.). Heidelberg; The Heidelberg Science Library, 1967.
Nagl W. Molecular phylogeny. In: Patterns and processes in the history of life (Raup DM, Jablonski D. Eds.). Berlin, Heidelberg, New York; Springer-Verlag; 1986. pp. 223-232.
Kirschning A. Coenzymes and their role in the evolution of life. Angew. Chem. Int. Ed. 2021; 60: 6242-6269.
Scott WG. Molecular palaeontology: understanding catalytic mechanisms in the RNA world by excavating clues from a ribozyme three-dimensional structure. Biochem Soc. Trans. 1996; 24(3): 604-608.
Joyce GF. The antiquity of RNA-based evolution. Nature 2002; 418: 214-221.
Cech TR, Bass BL. Biological catalysis by RNA. Ann. Rev. Biochem. 1986; 55: 599-629.
Gindulyte A, Bashan A, Agmon LI, et al. The transition state for formation of the peptide bond in the ribosome. Proc. Natl. Acad. Sci. USA 2006; 103(36): 13327-32.
Bose T, Fridkin G, Davidovich C, et al. Origin of life: protoribosome forms peptide bonds and links RNA and protein dominated worlds. Nucleic Acids Res. 2022; 50(4): 1815-1828.
Meselson M, Stahl F. The replication of DNA in Escherichia coli. Proc. Natl. Acad. Sci. USA, 1958; 44(7): 6761-682.
Ekuandayo B, Bleichert F. Origins of DNA replication. 2019; PLOS Genetics 15(9): e1008320.
Bloch DP. A possible mechanism for the replication of the helical structure of deoxyribonucleic acid. Proc. Nat. Acad. Sci. USA, 1955; 41: 1058–1064.
Hall CE, Cavalieri LF. Four-stranded DNA as determined by electron microscopy. J. Biophys. Biochem. Cytol. 1961; 10:347-351.
Cavalieri LF, Rosenberg BH. The replication of DNA. III. Changes in the number of strands in E. coli DNA during its replication cycle. Biophys. J. 1961; 1(4), 337–351.
Fong P. The replication of the DNA molecule. Proc. Natl. Acad. Sci. USA, 1964; 52(3): 641-647.
Löwdin PO. Quantum genetics and the aperiodic solid. Adv. Quant. Chem. 1966; 213–360.
Schrödinger E. What is life? The physical aspect of the living cell. 1945; London and New York: Cambridge Univ. Press.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Juan carlos Stockert
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any open-access article in a journal published by Globasci Publishing House Pte. Ltd. is retained by the authors. Authors grant Globasci Publishing House Pte. Ltd. a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified. The Creative Commons Attribution-NonCommercial 4.0 International License formalizes these and other terms and conditions of publishing articles.