Metal/Metal Oxides/Silsesquioxanes as Fillers for Functional Polymer Composites
DOI:
https://doi.org/10.37155/2972-449X-vol1(2)-76Keywords:
noneAbstract
Coalescence of properties of inorganic filler and polymer matrix provides fascinating and economic approach for tailoring the desired high performance materials. Due to unique capability of metal/metal oxides/ silsesquioxanes as nanofillers, they have attracted much attention to reinforce polymer matrices. We discuss here the influence of these nanofillers dispersion, interactions with polymer matrices, and consequent properties modification on technological applications.
References
dell’Erba, I.E., C.E. Hoppe, and R.J. Williams. Synthesis of silver nanoparticles coated with OH-functionalized organic groups: dispersion and covalent bonding in epoxy networks. Langmuir, 2009. 26(3): 2042-2049.
Zhou, J., Ralston, J., Sedev, R., et al. Functionalized gold nanoparticles: synthesis, structure and colloid stability. Journal of Colloid and Interface Science, 2009. 331(2): 251-262.
Carroll, J.B., B.L. Frankamp, and V.M. Rotello. Self-assembly of gold nanoparticles through tandem hydrogen bonding and polyoligosilsequioxane (POSS)–POSS recognition processes. Chemical Communications, 2002(17): 1892-1893.
Wang, Z.L. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter, 2004. 16(25): p. R829.
Laurent, S., Forge, D., Port, M., et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 2008. 108(6): p. 2064-2110.
Cheetham, A.K., C. Rao, and R.K. Feller. Structural diversity and chemical trends in hybrid inorganic–organic framework materials. Chemical Communications, 2006(46): p. 4780-4795.
Schubert, U., N. Huesing, and A. Lorenz. Hybrid inorganic-organic materials by sol-gel processing of organofunctional metal alkoxides. Chemistry of materials, 1995. 7(11): p. 2010-2027.
Selvaraj, V. and M. Alagar. Synthesis of Novel Ag/POSS Nanocomposite Powder for Glucose Oxidation and Antimicrobial Applications. Journal of Bionanoscience, 2008. 2(1): p. 54-61.
Cai, J., C. Lv, and A. Watanabe. Facile preparation of hierarchical structures using crystallization-kinetics driven self-assembly. Acs Applied Materials & Interfaces, 2015. 7(33): p. 18697-18706.
Hwang, S.-J., Jeng, S.-C., Yang, C.-Y., et al. Characteristics of nanoparticle-doped homeotropic liquid crystal devices. Journal of Physics D: Applied Physics, 2008. 42(2): p. 025102.
Ullah, A., Ullah, S., Khan, G.S., et al. Water soluble polyhedral oligomeric silsesquioxane based amphiphilic hybrid polymers: Synthesis, self-assembly, and applications. European Polymer Journal, 2016. 75: p. 67-92.
Feng, X., Zhu, S., Yue, K., et al. T10 polyhedral oligomeric silsesquioxane-based shape amphiphiles with diverse head functionalities via “click” chemistry. ACS Macro Letters, 2014. 3(9): p. 900-905.
Kannan, R.Y., Salacinski, H.J., Groot, J.D., et al. The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite. Biomacromolecules, 2006. 7(1): p. 215-223.
Engstrand, J., López, A., Engqvist, H., et al. Polyhedral oligomeric silsesquioxane (POSS)–poly (ethylene glycol)(PEG) hybrids as injectable biomaterials. Biomedical Materials, 2012. 7(3): p. 035013.
Ayandele, E., B. Sarkar, and P. Alexandridis. Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials, 2012. 2(4): p. 445-475.
Wang, W.-J., Hai, X., Mao, Q.-X., et al. Polyhedral oligomeric silsesquioxane functionalized carbon dots for cell imaging. ACS applied materials & interfaces, 2015. 7(30): p. 16609-16616.
Wang, D., Liu, J., Chen, J.-F., et al. Surface Functionalization of Carbon Dots with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Applications. Advanced Materials Interfaces, 2016. 3(1).
Rahman, M.M., Filiz, V., Khan, M.M., et al. Functionalization of poss nanoparticles and fabrication of block copolymer nanocomposite membranes for CO 2 separation. Reactive and Functional Polymers, 2015. 86: p. 125-133.
Ghanbari, H., B.G. Cousins, and A.M. Seifalian. A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromolecular rapid communications, 2011. 32(14): p. 1032-1046.
Tishchenko, G. and M. Bleha. Diffusion permeability of hybrid chitosan/polyhedral oligomeric silsesquioxanes (POSS™) membranes to amino acids. Journal of membrane science, 2005. 248(1): p. 45-51.
Wu, J. and P.T. Mather. POSS polymers: physical properties and biomaterials applications. 2009. 25-63.
Sanchez, C., Belleville, P., Popall, M., et al. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chemical Society Reviews, 2011. 40(2): p. 696-753.
Sanchez, C., K.J. Shea, and S. Kitagawa. Recent progress in hybrid materials science. Chemical Society Reviews, 2011. 40(2): p. 471-472.
Mbhele, Z., Salemane, M.G., Van Sittert, C., et al. Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chemistry of materials, 2003. 15(26): p. 5019-5024.
Flahaut, E., Peigney, A., Laurent, C., et al. Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties. Acta Materialia, 2000. 48(14): p. 3803-3812.
Somwangthanaroj, A., Suwanchatchai, K., Ando, S., et al. Effect of zinc precursor on thermal and light emission properties of ZnO nanoparticles embedded in polyimide films. Materials Chemistry and Physics, 2009. 114(2): p. 751-755.
Bouclé, J., P. Ravirajan, and J. Nelson. Hybrid polymer–metal oxide thin films for photovoltaic applications. Journal of Materials Chemistry, 2007. 17(30): p. 3141-3153.
Kruenate, J., Tongpool, R., Panyathanmaporn, T., et al. Optical and mechanical properties of polypropylene modified by metal oxides. Surface and interface analysis, 2004. 36(8): p. 1044-1047.
Muhammad, S., Niazi, J.H., Shawuti, S., et al. Functional POSS based polyimide nanocomposite for enhanced structural, thermal, antifouling and antibacterial properties. Materials Today Communications, 2022. 31: p. 103287.
Blanco, I., L. Abate, and F.A. Bottino. Variously substituted phenyl hepta cyclopentyl-polyhedral oligomeric silsesquioxane (ph, hcp-POSS)/polystyrene (PS) nanocomposites. Journal of thermal analysis and calorimetry, 2013. 112(1): p. 421-428.
Mu, J. and S. Zheng. Poly (N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: temperature-responsive behavior of hydrogels. Journal of Colloid and Interface Science, 2007. 307(2): p. 377-385.
Šupová, M., G.S. Martynková, and K. Barabaszová. Effect of nanofillers dispersion in polymer matrices: a review. Science of advanced materials, 2011. 3(1): p. 1-25.
Selvaraj, V., Grace, A.N., Jothibasu, S., et al. Synthesis and Characterization of Au/POSS Composite Powder for Bio-Fuel Cells and Antibiotic Applications. Journal of nanoscience and nanotechnology, 2009. 9(10): p. 5997-6002.
Bai, W., Sheng, Q., Ma, X., et al. Synthesis of silver nanoparticles based on hydrophobic interface regulation and its application of electrochemical catalysis. ACS Sustainable Chemistry & Engineering, 2015. 3(7): p. 1600-1609.
Létant, S.E., Herberg, J., Dinh, L.N., et al. Structure and catalytic activity of POSS-stabilized Pd nanoparticles. Catalysis Communications, 2007. 8(12): p. 2137-2142.
Aflori, M., Simionescu, B., Bordianu, I.E., et al. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones. Materials Science and Engineering: B, 2013. 178(19): p. 1339-1346.
Lu, C.-H. and F.-C. Chang. Polyhedral oligomeric silsesquioxane-encapsulating amorphous palladium nanoclusters as catalysts for Heck reactions. ACS Catalysis, 2011. 1(5): p. 481-488.
Liu, Y., Sun, Y., Zeng, F., et al. Effect of POSS nanofiller on structure, thermal and mechanical properties of PVDF matrix. Journal of nanoparticle research, 2013. 15(12): p. 1-10.
Fina, A., Abbenhuis, H.C.L., Tabuani, D., et al. Polypropylene metal functionalised POSS nanocomposites: a study by thermogravimetric analysis. Polymer Degradation and Stability, 2006. 91(5): p. 1064-1070.
Fu, H.-K., Kuo, S.W., Yeh, D.R., et al. Properties enhancement of PS nanocomposites through the POSS surfactants. Journal of Nanomaterials, 2008. 2008: p. 46.
Qian, Y., Wei, P., Zhao, X., et al. Flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane nanocomposites. Fire and Materials, 2013. 37(1): p. 1-16.
Matai, I., Sachdev, A., Dubey, P., et al. Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids and Surfaces B: Biointerfaces, 2014. 115: p. 359-367.
Sanchez, C., Lebeau, B., Chaput, F., et al. Optical properties of functional hybrid organic–inorganic nanocomposites. Advanced Materials, 2003. 15(23): p. 1969-1994.
Zhang, Z., Gu, A., Liang, G., et al. Thermo-oxygen degradation mechanisms of POSS/epoxy nanocomposites. Polymer Degradation and Stability, 2007. 92(11): p. 1986-1993.
Kuo, S.-W. and F.-C. Chang. POSS related polymer nanocomposites. Progress in Polymer Science, 2011. 36(12): p. 1649-1696.
Fina, A., S. Bocchini, and G. Camino. Catalytic fire retardant nanocomposites. Polymer Degradation and Stability, 2008. 93(9): p. 1647-1655.
Folarin, O.M., E.R. Sadiku, and A. Maity. Polymer-noble metal nanocomposites: review. International Journal of Physical Sciences, 2011. 6(21): p. 4869-4882.
Faure, B., Salazar-Alvarez, G., Ahniyaz, A., et al. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Science and Technology of Advanced Materials, 2013. 14(2): p. 023001.
Chen, Y., Y. Xianyu, and X. Jiang. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Accounts of chemical research, 2017. 50(2): p. 310-319.
Kango, S., Kalia, S., Celli, A., et al. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Progress in Polymer Science, 2013. 38(8): p. 1232-1261.
Muhammad, S., Siddiq, M., Niazi, J.H., et al. Role of quaternary ammonium compound immobilized metallic graphene oxide in PMMA/PEG membrane for antibacterial, antifouling and selective gas permeability properties. Polymer Bulletin, 2018. 75(12): p. 5695-5712.
Muhammad, S., J. Niazi, and A. Qureshi. Silver nanoparticles decorated polyhedral oligomeric silsesquioxane nanocages as an effective nanoadditive for improved structural and biological properties of poly (vinylidene fluoride-co-hexafluoropropylene) nanofiltration membrane. Materials Today Chemistry, 2022. 23: p. 100643.
Lei, C., Zhou, Z., Chen, W., et al. Polypyrrole supported Pd/Fe bimetallic nanoparticles with enhanced catalytic activity for simultaneous removal of 4-chlorophenol and Cr (VI). Science of The Total Environment, 2022. 831: p. 154754.
Shrestha, S., B. Wang, and P. Dutta. Nanoparticle processing: Understanding and controlling aggregation. Advances in colloid and interface science, 2020. 279: p. 102162.
Gupta, A.K. and M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021.
Castelvetro, V. and C. De Vita. Nanostructured hybrid materials from aqueous polymer dispersions. Advances in colloid and interface science, 2004. 108: p. 167-185.
Griffete, N., Clift, M.J.D., Lamouri, A., et al. Amino covalent binding approach on iron oxide nanoparticle surface: toward biological applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012. 415: p. 98-104.
Maity, D. and D. Agrawal. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. Journal of Magnetism and Magnetic Materials, 2007. 308(1): p. 46-55.
Qiao, R., Esser, L., Fu, C., et al. Bioconjugation and fluorescence labeling of iron oxide nanoparticles grafted with bromomaleimide-terminal polymers. Biomacromolecules, 2018. 19(11): p. 4423-4429.
Hola, K., Markova, Z., Zoppellaro, G., et al. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnology advances, 2015. 33(6): p. 1162-1176.
Lee, S.H., H. Nishi, and T. Tatsuma. Tunable plasmon resonance of molybdenum oxide nanoparticles synthesized in non-aqueous media. Chemical Communications, 2017. 53(94): p. 12680-12683.
Patil, R.M., Shete, P.B., Thorat, N.D., et al. Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application. RSC Advances, 2014. 4(9): p. 4515-4522.
Alliraja, C., J.R. Rao, and P. Thanikaivelan. Magnetic collagen fibers stabilized using functional iron oxide nanoparticles in non-aqueous medium. RSC Advances, 2015. 5(27): p. 20939-20944.
Kharisov, B.I., Dias, H.V.R., Kharissova, O.V., et al. Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Advances, 2014. 4(85): p. 45354-45381.
Shankar, R., Groven, L., Amert, A., et al. Non-aqueous synthesis of silver nanoparticles using tin acetate as a reducing agent for the conductive ink formulation in printed electronics. Journal of Materials Chemistry, 2011. 21(29): p. 10871-10877.
Peiris, T.N., Weerasinghe, H.C., Sharma, M., et al. Non-Aqueous One-Pot SnO2 Nanoparticle Inks and Their Use in Printable Perovskite Solar Cells. Chemistry of materials, 2022.
Kharissova, O.V., B.I. Kharisov, and E.G. de Casas Ortiz. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Advances, 2013. 3(47): p. 24812-24852.
Kaushik, M. and A. Moores. Nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chemistry, 2016. 18(3): p. 622-637.
Wang, S., McGuirk, C.M., d'Aquino, A., et al. Metal–organic framework nanoparticles. Advanced materials, 2018. 30(37): p. 1800202.
Park, J.-W. and J.S. Shumaker-Parry. Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization. ACS nano, 2015. 9(2): p. 1665-1682.
Burrows, N.D., Vartanian, A.M., Abadeer, N.S., et al. Anisotropic nanoparticles and anisotropic surface chemistry. The journal of physical chemistry letters, 2016. 7(4): p. 632-641.
Burrows, N.D., Lin, W., Hinman, J.G., et al. Surface chemistry of gold nanorods. Langmuir, 2016. 32(39): p. 9905-9921.
Rossi, L.M., Fiorio, J.L., Garcia, M.A.S., et al. The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Transactions, 2018. 47(17): p. 5889-5915.
Ding, Y., M. Floren, and W. Tan. Mussel-inspired polydopamine for bio-surface functionalization. Biosurface and biotribology, 2016. 2(4): p. 121-136.
Ryu, J.H., P.B. Messersmith, and H. Lee. Polydopamine surface chemistry: a decade of discovery. ACS applied materials & interfaces, 2018. 10(9): p. 7523-7540.
Gao, C., F. Lyu, and Y. Yin. Encapsulated metal nanoparticles for catalysis. Chemical Reviews, 2020. 121(2): p. 834-881.
Soriano, G.B., da Silva Oliveira, R., Camilo, F.F., et al. Interaction of non-aqueous dispersions of silver nanoparticles with cellular membrane models. Journal of colloid and interface science, 2017. 496: p. 111-117.
Sahooli, M. and S. Sabbaghi. Investigation of thermal properties of CuO nanoparticles on the ethylene glycol–water mixture. Materials Letters, 2013. 93: p. 254-257.
Mallakpour, S. and A. Jarahiyan. An eco-friendly approach for the synthesis of biocompatible poly(vinyl alcohol) nanocomposite with aid of modified CuO nanoparticles with citric acid and vitamin C: mechanical, thermal and optical properties. Journal of the Iranian Chemical Society, 2016. 13(3): p. 509-518.
Karuppiah, C., Velmurugan, M., Chen, S.M., et al. A simple hydrothermal synthesis and fabrication of zinc oxide–copper oxide heterostructure for the sensitive determination of nonenzymatic glucose biosensor. Sensors and Actuators B: Chemical, 2015. 221: p. 1299-1306.
Faure, B., Salazar-Alvarez, G., Ahniyaz, A., et al. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Science and Technology of Advanced Materials, 2016.
Rouxel, D., Vincent, B., Badie, L., et al. Influence of cluster size and surface functionalization of ZnO nanoparticles on the morphology, thermomechanical and piezoelectric properties of P (VDF-TrFE) nanocomposite films. Applied Surface Science, 2013. 279: p. 204-211.
Mallakpour, S. and M. Madani. Use of silane coupling agent for surface modification of zinc oxide as inorganic filler and preparation of poly (amide-imide)/zinc oxide nanocomposite containing phenylalanine moieties. Bulletin of Materials Science, 2012. 35(3): p. 333-339.
Zhou, L., He, B., Yang, Y., et al. Facile approach to surface functionalized MoS 2 nanosheets. RSC Advances, 2014. 4(61): p. 32570-32578.
Wang, D., Liu, J., Chen, J.F., et al. Surface functionalization of carbon dots with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. Advanced Materials Interfaces, 2016. 3(1): p. 1500439.
Dong, F., L. Lu, and C.S. Ha. Silsesquioxane‐Containing Hybrid Nanomaterials: Fascinating Platforms for Advanced Applications. Macromolecular Chemistry and Physics, 2019. 220(3): p. 1800324.
Sun, D., W. Wang, and D. Yu. Highly hydrophobic cotton fabrics prepared with fluorine-free functionalized silsesquioxanes. Cellulose, 2017. 24(10): p. 4519-4531.
Przybylak, M., H. Maciejewski, and A. Dutkiewicz. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process. Applied Surface Science, 2016. 387: p. 163-174.
Ge, Q. and H. Liu. Tunable amine-functionalized silsesquioxane-based hybrid networks for efficient removal of heavy metal ions and selective adsorption of anionic dyes. Chemical Engineering Journal, 2022. 428: p. 131370.
Zhang, R.L., Wang, C.G., Liu, L., et al. Polyhedral oligomeric silsesquioxanes/carbon nanotube/carbon fiber multiscale composite: Influence of a novel hierarchical reinforcement on the interfacial properties. Applied Surface Science, 2015. 353: p. 224-231.
Yang, X. and H. Liu. Ferrocene‐Functionalized Silsesquioxane‐Based Porous Polymer for Efficient Removal of Dyes and Heavy Metal Ions. Chemistry–A European Journal, 2018. 24(51): p. 13504-13511.
Yang, H. and H. Liu. Pyrene-functionalized silsesquioxane as fluorescent nanoporous material for antibiotics detection and removal. Microporous and Mesoporous Materials, 2020. 300: p. 110135.
Chuo, T.-W. and Y.-L. Liu. Preparation of self-healing organic–inorganic nanocomposites with the reactions between methacrylated polyhedral oligomeric silsesquioxanes and furfurylamine. Composites Science and Technology, 2015. 118: p. 236-243.
Akbari, A., A. Naderahmadian, and B. Eftekhari-Sis. Silver and copper nanoparticles stabilized on ionic liquids-functionalized polyhedral oligomeric silsesquioxane (POSS): Highly active and recyclable hybrid catalysts. Polyhedron, 2019. 171: p. 228-236.
Song, S., Cao, M., Shan, H., et al. Polyhedral oligomeric silsesquioxane functionalized carbon nanotubes for high thermal conductive poly (vinylidene fluoride) composite membrane. Materials & Design, 2018. 156: p. 242-251.
Shi, M., Cao, M., Shan, H., et al. Functionalization of graphene oxide by radiation grafting polyhedral oligomeric silsesquioxane with improved thermal stability and hydrophilicity. Journal of Materials Science, 2020. 55(4): p. 1489-1498.
Zhang, J., Si, D., Wang, S., et al. Novel Organic/Inorganic Hybrid Star Polymer Surface-Crosslinked with Polyhedral Oligomeric Silsesquioxane. Macromolecular Research, 2020. 28(2): p. 152-158.
Ogawa, S., Hayashi, Y., Kobayashi, N., et al. Novel preparation method of metal particles dispersed in polymer films and their third-order optical nonlinearities. Japanese journal of applied physics, 1994. 33(3A): p. L331.
Pomogailo, A.D. and G.I. Dzhardimalieva. Reduction of Metal Ions in Polymer Matrices as a Condensation Method of Nanocomposite Synthesis. Nanostructured Materials Preparation via Condensation Ways. 2014, Springer. p. 13-89.
Hakemi, H.A. Metallo organo liquid crystals in a polymer matrix. 1998, Google Patents.
Khrenov, V., Klapper, M., Koch, M., et al. Surface functionalized ZnO particles designed for the use in transparent nanocomposites. Macromolecular Chemistry and Physics, 2005. 206(1): p. 95-101.
Zong, P., Fu, J., Chen, L., et al. Effect of aminopropylisobutyl polyhedral oligomeric silsesquioxane functionalized graphene on the thermal conductivity and electrical insulation properties of epoxy composites. RSC Advances, 2016. 6(13): p. 10498-10506.
Liu, K., Chen, S., Luo, Y., et al. Noncovalently functionalized pristine graphene/metal nanoparticle hybrid for conductive composites. Composites Science and Technology, 2014. 94: p. 1-7.
Ben-Sasson, M., Zodrow, K.R., Genggeng, Q., et al. Surface functionalization of thin-film composite membranes with copper nanoparticles for antimicrobial surface properties. Environmental science & technology, 2014. 48(1): p. 384-393.
Kanahara, M., M. Shimomura, and H. Yabu. Fabrication of gold nanoparticle–polymer composite particles with raspberry, core–shell and amorphous morphologies at room temperature via electrostatic interactions and diffusion. Soft Matter, 2014. 10(2): p. 275-280.
Huang, Q., Liu, M., Chen, J., et al. Facile preparation of MoS2 based polymer composites via mussel inspired chemistry and their high efficiency for removal of organic dyes. Applied Surface Science, 2017. 419: p. 35-44.
Xie, X.-L., Y.-W. Mai, and X.-P. Zhou. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Materials science and engineering: R: Reports, 2005. 49(4): p. 89-112.
Liu, Q., Zhao, Y., Gao, S., et al. Recent advances in the flame retardancy role of graphene and its derivatives in epoxy resin materials. Composites Part A: Applied Science and Manufacturing, 2021. 149: p. 106539.
Shah, M., Ullah, A., Azher, K., et al. The Influence of Nanoparticle Dispersions on Mechanical and Thermal Properties of Polymer Nanocomposites Using SLA 3D Printing. Crystals, 2023. 13(2): p. 285.
Gao, H. and T. Qiang. Fracture surface morphology and impact strength of cellulose/PLA composites. Materials, 2017. 10(6): p. 624.
Zhang, S., L,i M., Hao, N., et al. Stereolithography 3D printing of lignin-reinforced composites with enhanced mechanical properties. ACS omega, 2019. 4(23): p. 20197-20204.
Vidakis, N., Petousis, M., Michailidis, N., et al. High-performance medical-grade resin radically reinforced with cellulose nanofibers for 3D printing. Journal of the Mechanical Behavior of Biomedical Materials, 2022. 134: p. 105408.
Dong, D., Su, H., Li, X., et al. Microstructures and mechanical properties of biphasic calcium phosphate bioceramics fabricated by SLA 3D printing. Journal of Manufacturing Processes, 2022. 81: p. 433-443.
Markandan, K. and C.Q. Lai. Enhanced mechanical properties of 3D printed graphene-polymer composite lattices at very low graphene concentrations. Composites Part A: Applied Science and Manufacturing, 2020. 129: p. 105726.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Saz Muhammad, Farwa Batool, Muhammad Irfan, Muhammad Ahmad
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright on any open-access article in a journal published by Globasci Publishing House Pte. Ltd. is retained by the authors. Authors grant Globasci Publishing House Pte. Ltd. a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified. The Creative Commons Attribution-NonCommercial 4.0 International License formalizes these and other terms and conditions of publishing articles.