Maxillofacial Prosthesis and Dental Implantation for Cosmetics and Remodeling: A Systematic Mini Review on the Influence of Age on Dental and Facial Implants

Authors

  • Isiaka Oluwole Oladele Department of Metallurgical and Materials Engineering, Federal University of Technology, P.M.B. 704, Akure, Ondo State, 340282, Nigeria https://orcid.org/0000-0001-7168-1518
  • Linus Nnabuike Onuh Department of Metallurgical and Materials Engineering, Federal University of Technology, P.M.B. 704, Akure, Ondo State, 340282, Nigeria
  • Anuoluwapo Samuel Taiwo Department of Metallurgical and Materials Engineering, Federal University of Technology, P.M.B. 704, Akure, Ondo State, 340282, Nigeria
  • Newton Itua Agbeboh Department of Metallurgical and Materials Engineering, Federal University of Technology, P.M.B. 704, Akure, Ondo State, 340282, Nigeria
  • Miracle Hope Adegun Department of Metallurgical and Materials Engineering, Federal University of Technology, P.M.B. 704, Akure, Ondo State, 340282, Nigeria

DOI:

https://doi.org/10.37155/2972-449X-vol1(3)-90

Keywords:

Maxillofacial prosthesis implantation, Dental implants, Dental oral surgery, Biomedical implants

Abstract

The demand for advanced cosmetics needed for remodeling to enhance beauty and fashion is on the increase in modern times. Also, some of the major parts of the human head that bring about great discomfort in the human body if not put in proper conditions are the teeth, nose, ears, and eyes. Among these parts, the teeth are highly susceptible to serious attack and damage at various stages of life. To date, pleasurable feeding would be practically impossible for humans without the aid of teeth that are responsible for cutting and chewing. However, as with other parts of the human body, there are always issues affecting the maxillofacial prosthesis and teeth, which are usually the result of aging, accidents, or diseases. These issues influence the rising need for the replacement of maxillofacial and dental bones with different materials that are developed to meet the structural and biocompatibility needs. Facial and dental implantations have brought about many modifications to human appearance in recent times. The implants are expected to be safe and acceptable to the body system as the patient grows since growth is crucial to human existence. As, growth is a function of the age group in human beings and, the three major age groups respond to growth at different rates. Thus, this review considers the influence of the human age group on maxillofacial and dental implants. The review provides an insight to the demand from each age group and the necessary guides on the selection of appropriate biomaterials as well as future expectations for maxillofacial and dental bones. This is essential because adequate knowledge of the age group of the patients who need maxillofacial and dental bones demands accurate prescriptions.

References

Zimmerman B, Shumway KR, Jenzer AC, Physiology, Tooth. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538475/. [Last accessed on 17 October 2023].

Yan R, Chen X, Gong X, et al. The association of tooth loss, toothbrushing, and quality of life among cancer survivors[J]. Cancer Medicine, 2018, 7(12): 6374-6384. https://doi.org/10.1002/cam4.1835.

Griggs J A. Dental implants[J]. Dental Clinics, 2017, 61(4): 857-871. https://doi.org/10.1016/j.cden.2017.06.007.

De Souza N, Manju R, Hegde A M. Development and evaluation of new clinical methods of age estimation in children based on the eruption status of primary teeth[J]. Journal of Indian Society of Pedodontics and Preventive Dentistry, 2018, 36(2): 185-190. https://doi.org/10.4103/JISPPD.JISPPD_121_17.

Annibali S, Cristalli M P, Dell’Aquila D, et al. Short dental implants: a systematic review[J]. Journal of dental research, 2012, 91(1): 25-32. https://doi.org/10.1177/0022034511425675.

Watt R G. Teeth and inequality: from past to present[J]. The Lancet, 2018, 391(10138): 2406. https://doi.org/10.1016/S0140-6736(18)31273-X.

Oladele I O, Taiwo A S, Onuh L N, et al. Characterization of animal shells-derived hydroxyapatite reinforced epoxy bio-composites[J]. Composites and Advanced Materials, 2023, 32: 1-13. https://doi.org/10.1177/26349833231223984.

Oladele I O, Omotosho T F, Ogunwande G S, et al. A review on the philosophies for the advancement of polymer-based composites: Past, present and future perspective[J]. Applied Science and Engineering Progress, 2021, 14(4): 553-579. https://doi.org/10.14416/j.asep.2021.08.003.

Agbabiaka O G, Oladele I O, Akinwekomi A D, et al. Effect of calcination temperature on hydroxyapatite developed from waste poultry eggshell[J]. Scientific African, 2020, 8: e00452. https://doi.org/10.1016/j.sciaf.2020.e00452.

Kamatham R, Avisa P, Vinnakota D N, et al. Adverse effects of implants in children and adolescents: A systematic review[J]. Journal of Clinical Pediatric Dentistry, 2019, 43(2): 69-77. https://doi.org/10.17796/1053-4625-43.2.1.

Oladele I O, Omotosho T F, Adediran A A. Polymer-based composites: an indispensable material for present and future applications[J]. International Journal of Polymer Science, 2020, 2020: 1-12. https://doi.org/10.1155/2020/8834518.

Muhamad A H, Azzaldeen A, Maria A, et al. Dental Implants in Children: An Update[J]. J Oral Health Dent Res, 2021, 1(1): 1-9.

Brahim J S. Dental implants in children[J]. Oral and Maxillofacial Surgery Clinics, 2005, 17(4): 375-381. https://doi.org/10.1016/j.coms.2005.06.003.

Muhamad A H, Azzaldeen A, Nezar W, et al. Congenitally missing lateral incisor with orthodontics, bone grafting and single-tooth implant: a case report[J]. J Dent Med Sci, 2015, 14(4): 124-130.

Oladele I O, Onuh L N, Agbeboh N I, et al. The relationship and functional links between human age, growth, and biomedical implants: A review on the application of bulk and nanomaterials[J]. Nano Select, 2023, 4(7): 419-441. https://doi.org/10.1002/nano.202300055.

Srinivasan M, Meyer S, Mombelli A, et al. Dental implants in the elderly population: a systematic review and meta‐analysis[J]. Clinical oral implants research, 2017, 28(8): 920-930. https://doi.org/10.1111/clr.12898.

Arhakis A, Boutiou E. Etiology, diagnosis, consequences and treatment of infraoccluded primary molars[J]. The open dentistry journal, 2016, 10: 714-726. https://doi.org/10.2174/2F1874210601610010714.

Sheng L, Silvestrin T, Zhan J, et al. Replacement of severely traumatized teeth with immediate implants and immediate loading: literature review and case reports[J]. Dental Traumatology, 2015, 31(6): 493-503. https://doi.org/10.1111/edt.12201.

Sharma P, Arora A, Valiathan A. Age changes of jaws and soft tissue profile[J]. The Scientific World Journal, 2014, 2014. https://doi.org/10.1155/2014/301501.

Gobbato L, Paniz G, Mazzocco F, et al. Multidisciplinary management of a young female with infraoccluded dental implants: a case report[J]. The International Journal of Esthetic Dentistry, 2016, 11(2): 162-173.

Giannetti L, Murri Dello Diago A, Vecci F, et al. Mini-implants in growing patients: A case report[J]. Pediatric Dentistry, 2010, 32(3): 239-244.

Kumari S, Nichani M H, Hariharan V S. Dental implants in children and adolescents[J]. Indian Journal of Multidisciplinary Dentistry, 2010, 1(1): 50-54.

Sharma A B, Vargervik K. Using implants for the growing child[J]. Journal of the California Dental Association, 2006, 34(9): 719-724. https://doi.org/10.1080/19424396.2006.12222241.

Fernandes A P S, Battistella M A. Dental Implants in Pediatric Dentistry: A Literature Review[J]. Brazilian Journal of Implantology and Health Sciences, 2020, 2(2): 1-12. https://doi.org/10.36557/2674-8169.2020v2n2p1-12.

Walter C, Al-Nawas B, Wolff T, et al. Dental implants in patients treated with antiresorptive medication–a systematic literature review[J]. International journal of implant dentistry, 2016, 2(1): 1-15. https://doi.org/10.1186/s40729-016-0041-7.

Thilander B, Ödman J, Lekholm U. Orthodontic aspects of the use of oral implants in adolescents: a 10‐year follow‐up study[J]. The European Journal of Orthodontics, 2001, 23(6): 715-731. https://doi.org/10.1093/ejo/23.6.715.

Bohner L, Hanisch M, Kleinheinz J, et al. Dental implants in growing patients: a systematic review[J]. British Journal of Oral and Maxillofacial Surgery, 2019, 57(5): 397-406. https://doi.org/10.1016/j.bjoms.2019.04.011.

Jivraj S, Chee W. Treatment planning of implants in the aesthetic zone[J]. British dental journal, 2006, 201(2): 77-89. https://doi.org/10.1038/sj.bdj.4813820.

Schneider D, Witt L, Hämmerle C H F. Influence of the crown‐to‐implant length ratio on the clinical performance of implants supporting single crown restorations: a cross‐sectional retrospective 5‐year investigation[J]. Clinical oral implants research, 2012, 23(2): 169-174. https://doi.org/10.1111/j.1600-0501.2011.02230.x.

Schulte J, Flores A M, Weed M. Crown-to-implant ratios of single tooth implant-supported restorations[J]. The Journal of prosthetic dentistry, 2007, 98(1): 1-5. https://doi.org/10.1016/S0022-3913(07)60031-6.

Ledermann P D, Hassell T M, Hefti A F. Osseointegrated dental implants as alternative therapy to bridge construction or orthodontics in young patients: seven years of clinical experience[J]. Pediatric Dentistry, 1993, 15(5): 327-333.

Bartold P M, Ivanovski S, Darby I. Implants for the aged patient: biological, clinical and sociological considerations[J]. Periodontology 2000, 2016, 72(1): 120-134. https://doi.org/10.1111/prd.12133.

Donos N, Hamlet S, Lang N P, et al. Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface[J]. Clinical oral implants research, 2011, 22(4): 365-372. https://doi.org/10.1111/j.1600-0501.2010.02113.x.

Ivanovski S, Hamlet S, Retzepi M, et al. Transcriptional profiling of “guided bone regeneration” in a critical‐size calvarial defect[J]. Clinical oral implants research, 2011, 22(4): 382-389. https://doi.org/10.1111/j.1600-0501.2010.02104.x.

Doles J, Storer M, Cozzuto L, et al. Age-associated inflammation inhibits epidermal stem cell function[J]. Genes & development, 2012, 26(19): 2144-2153. http://www.genesdev.org/cgi/doi/10.1101/gad.192294.112.

Gómez‐Moreno G, Aguilar‐Salvatierra A, Rubio Roldán J, et al. Peri‐implant evaluation in type 2 diabetes mellitus patients: a 3‐year study[J]. Clinical oral implants research, 2015, 26(9): 1031-1035. https://doi.org/10.1111/clr.12391.

Anitua E, Alkhraisat M H, Tejero R. Immediate replacement of failed dental implants owing to periimplantitis[J]. Journal of Oral Science and Rehabilitation, 2015, 1: 8-14.

Hadjiargyrou M, O'Keefe R J. The convergence of fracture repair and stem cells: interplay of genes, aging, environmental factors and disease[J]. Journal of bone and mineral research, 2014, 29(11): 2307-2322. https://doi.org/10.1002/jbmr.2373.

Richardson G D, Breault D, Horrocks G, et al. Telomerase expression in the mammalian heart[J]. The FASEB Journal, 2012, 26(12): 4832-4840. https://doi.org/10.1096%2Ffj.12-208843.

Jung Y, Brack A S. Cellular mechanisms of somatic stem cell aging[J]. Current topics in developmental biology, 2014, 107: 405-438. https://doi.org/10.1016/B978-0-12-416022-4.00014-7.

Bagno A, Di Bello C. Surface treatments and roughness properties of Ti-based biomaterials[J]. Journal of materials science: materials in medicine, 2004, 15: 935-949. https://doi.org/10.1023/B:JMSM.0000042679.28493.7f.

Le Guéhennec L, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration[J]. Dental materials, 2007, 23(7): 844-854. https://doi.org/10.1016/j.dental.2006.06.025.

Zhang J, An Y, Gao L N, et al. The effect of aging on the pluripotential capacity and regenerative potential of human periodontal ligament stem cells[J]. Biomaterials, 2012, 33(29): 6974-6986. https://doi.org/10.1016/j.biomaterials.2012.06.032.

Kloss F R, Gassner R. Bone and aging: effects on the maxillofacial skeleton[J]. Experimental gerontology, 2006, 41(2): 123-129. https://doi.org/10.1016/j.exger.2005.11.005.

Gunin A G, Petrov V V, Golubtzova N N, et al. Age-related changes in angiogenesis in human dermis[J]. Experimental Gerontology, 2014, 55: 143-151. https://doi.org/10.1016/j.exger.2014.04.010.

Gurtner G C, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193): 314-321. https://doi.org/10.1038/nature07039.

Smith P C, Cáceres M, Martínez C, et al. Gingival wound healing: an essential response disturbed by aging?[J]. Journal of dental research, 2015, 94(3): 395-402. https://doi.org/10.1177/0022034514563750.

Du Z, Chen J, Yan F, et al. Serum bone formation marker correlation with improved osseointegration in osteoporotic rats treated with simvastatin[J]. Clinical oral implants research, 2013, 24(4): 422-427. https://doi.org/10.1111/j.1600-0501.2011.02341.x.

Javed F, Vohra F, Zafar S, et al. Significance of osteogenic surface coatings on implants to enhance osseointegration under osteoporotic-like conditions[J]. Implant dentistry, 2014, 23(6): 679-686. https://doi.org/10.1097/ID.0000000000000161.

Giro G, Chambrone L, Goldstein A, et al. Impact of osteoporosis in dental implants: a systematic review[J]. World journal of orthopedics, 2015, 6(2): 311-315. https://doi.org/10.5312、wjo.v6.i2.311.

Van Velzen F J J, Ofec R, Schulten E A J M, et al. 10‐year survival rate and the incidence of peri‐implant disease of 374 titanium dental implants with a SLA surface: a prospective cohort study in 177 fully and partially edentulous patients[J]. Clinical oral implants research, 2015, 26(10): 1121-1128. https://doi.org/10.1111/clr.12499.

Lee H J, Kim Y K, Park J Y, et al. Short-term clinical retrospective study of implants in geriatric patients older than 70 years[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2010, 110(4): 442-446. https://doi.org/10.1016/j.tripleo.2010.02.019.

Michas F, Top Surgical Costmetic Procedures Worldwide in 2020. Statista 2022. [Last accessed on 17 October 2023].

Rojas Y A, Sinnott C, Colasante C, et al. Facial implants: controversies and criticism. A comprehensive review of the current literature[J]. Plastic and Reconstructive Surgery, 2018, 142(4): 991-999. https://doi.org/10.1097/PRS.0000000000004765.

Oliver J D, Eells A C, Saba E S, et al. Alloplastic facial implants: a systematic review and meta-analysis on outcomes and uses in aesthetic and reconstructive plastic surgery[J]. Aesthetic Plastic Surgery, 2019, 43: 625-636. https://doi.org/10.1007/s00266-019-01370-0.

Cuzalina L A, Hlavacek M R. Complications of facial implants[J]. Oral and Maxillofacial Surgery Clinics of North America, 2009, 21(1): 91-104. https://doi.org/10.1016/j.coms.2008.10.009.

Yaremchuk M J. Facial skeletal reconstruction using porous polyethylene implants[J]. Plastic and reconstructive surgery, 2003, 111(6): 1818-1827. https://doi.org/10.1097/01.PRS.0000056866.80665.7A.

Goldsmith D, Horowitz A, Orentlicher G. Facial skeletal augmentation using custom facial implants[J]. Atlas of the oral and maxillofacial surgery clinics of North America, 2012, 20(1): 119-134. https://doi.org/10.1016/j.cxom.2011.12.002.

Prakasam M, Locs J, Salma-Ancane K, et al. Biodegradable materials and metallic implants—a review[J]. Journal of functional biomaterials, 2017, 8(4): 44. https://doi.org/10.3390/jfb8040044.

Quatela V C, Chow J. Synthetic facial implants[J]. Facial Plastic Surgery Clinics of North America, 2008, 16(1): 1-10. https://doi.org/10.1016/j.fsc.2007.09.002.

Patel K, Brandstetter K. Solid implants in facial plastic surgery: potential complications and how to prevent them[J]. Facial Plastic Surgery, 2016, 32(05): 520-531. https://doi.org/10.1055/s-0036-1586497.

Granström G, Bergström K, Odersjö M, et al. Osseointegrated implants in children: experience from our first 100 patients[J]. Otolaryngology—Head and Neck Surgery, 2001, 125(1): 85-92. https://doi.org/10.1067/mhn.2001.116190.

Walker T J, Toriumi D M. Analysis of facial implants for bacterial biofilm formation using scanning electron microscopy[J]. JAMA Facial Plastic Surgery, 2016. https://doi.org/10.1001/jamafacial.2016.0279.

Ridwan-Pramana A, Wolff J, Raziei A, et al. Porous polyethylene implants in facial reconstruction: Outcome and complications[J]. Journal of Cranio-Maxillofacial Surgery, 2015, 43(8): 1330-1334. https://doi.org/10.1016/j.jcms.2015.06.022.

Desai S C, Moradzadeh A, Branham G. Anatomical evidence of microbial biofilms in an alloplastic nasal implant[J]. Aesthetic plastic surgery, 2013, 37: 468-471. https://doi.org/10.1007/s00266-013-0065-9.

Romo III T, Pearson J M. Nasal implants[J]. Facial Plastic Surgery Clinics of North America, 2008, 16(1): 123-132. https://doi.org/10.1016/j.fsc.2007.09.004.

Berghaus A, Stelter K. Alloplastic materials in rhinoplasty[J]. Current opinion in otolaryngology & head and neck surgery, 2006, 14(4): 270-277. https://doi.org/10.1097/01.moo.0000233599.14671.4a.

Brandt M G, Moore C C. Implants in facial skeletal augmentation[J]. Current Opinion in Otolaryngology & Head and Neck Surgery, 2013, 21(4): 396-399. https://doi.org/10.1097/MOO.0b013e32836385d1.

Niazi T M, Ulaganathan G, Kalaiselvan S, et al. Dental implants: a remote option in case of somatic delusion disorder[J]. Journal of Pharmacy & Bioallied Sciences, 2017, 9(Suppl 1): S257–S260. https://doi.org/10.4103%2Fjpbs.JPBS_105_17.

Akpata O, Omoregie O F, Akhigbe K, et al. Evaluation of oral and extra-oral factors predisposing to delusional halitosis[J]. Ghana medical journal, 2009, 43(2). https://doi.org/10.4314/gmj.v43i2.55314.

Uguru C, Umeanuka O, Uguru N P, et al. The delusion of halitosis: Experience at an eastern Nigerian tertiary hospital[J]. Nigerian Journal of Medicine, 2011, 20(2): 236-240.

Downloads

Published

20-02-2024

How to Cite

Oladele, I. O., Onuh, L. N., Taiwo, A. S., Agbeboh, N. I., & Adegun, M. H. (2024). Maxillofacial Prosthesis and Dental Implantation for Cosmetics and Remodeling: A Systematic Mini Review on the Influence of Age on Dental and Facial Implants. BME Horizon, 1(3). https://doi.org/10.37155/2972-449X-vol1(3)-90

Issue

Section

Review